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1  INTRODUCTION 
 

The advent of Fibre Reinforced Plastic (FRP) as reinforcement or as prestressing tendons for 
concrete has many attractions, since they are more durable than steel.  However, they show no 
ductility before failure (although their large strain capacity normally means they are unlikely to snap), 
which means that beams will normally be designed to be over-reinforced.  Thus, instead of failure 
being initiated by yielding of the steel, with the concrete failing later, it will be caused by crushing of 
the concrete.  Hitherto it has been enough to say that the concrete has sufficient strength, without 
requiring too much understanding of the actual failure process, but if the concrete is going to fail first 
more detail is required. 

It is also desirable for the concrete to have greater ductility, and to this end, it has been suggested 
[1] that spirals of reinforcement should be included in the compression zone (with their axes aligned 
parallel to the compressive force) to provide additional confinement; if FRPs are being used as the 
tension reinforcement it is logical to use them also for the hoop reinforcement.  Although rectangular 
links can be made from steel, they are not ideal for FRP because of strength loss in the corners, and 
they are anyway less efficient at generating confining stress than circular links. 

 

 
 

                                             Fig. 1   Novel beam design. 
 

 The applications envisaged are in beams, where it makes both structural and practical sense for 
them to have rectangular compression flanges (Figure 1).  Thus, to maximise the area that is to be 
confined, it is possible to envisage a rectangular compression flange that contains a series of 
overlapping spirals.  There will thus be three types of concrete to be considered – the unconfined 
concrete in the cover region, the singly-confined concrete inside one spiral, and doubly-confined 
concrete in the regions where two spirals overlap.  There have been many studies where researchers 
have conducted tests on confined concrete, to which curves have been fitted, but very little work that 
goes back to the fundamental properties of concrete in such a way that the important factors can be 
investigated.  This paper proposes such an analytical model for both types of confined concrete.  
Space does not permit here the comparisons that have been carried out with tests, but these have 
been done and are reported elsewhere.  The model here has been extended to determine the 
moment-curvature relationship for beams, which have also been tested experimentally [2].   
 Many tests [3-9] have shown that unconfined plain concrete, in particular high strength concrete, 
exhibits a brittle failure mode; the failure may be explosive and marks the termination of the stress-
strain curve and loss of load-carrying capacity shortly after the peak load.  Under deformation control, 
the stress-strain curve normally includes a monotonically increasing branch up to a peak value, 
followed by a descending part that gradually flattens to a constant value.  The initial portion of the 



FRPRCS-8  University of Patras, Patras, Greece, July 16-18, 2007 

 2

ascending branch is linearly elastic but at about 70% of the ultimate strength, the presence of 
microcracks leads to non-linear behaviour, with a reduction in tangent modulus.  In the subsequent 
descending branch the concrete is severely damaged with prominent cracks.  There is a small lateral 
expansion during the ascending phase, associated with normal Poisson’s ratio effects and an increase 
in volume caused by the microcracks, but the lateral expansion increases dramatically after the peak 
as the cracks expand.  
 However, if there exists a lateral pressure which resists this sideways expansion, the core 
concrete will be in a state of multi-axial compression; both the deformation capacity and strength are 
improved [10-17].  There are two means of confinement to provide the lateral pressure, active and 
passive.  Both aim to restrict the core concrete from expansion but the mechanism used to induce the 
confining pressure is different.   
 In active confinement, the lateral pressure is applied by an external force whose value is known or 
can even be controlled in response to the applied load.  Kotsovos has presented the results of a study 
of concrete loaded in this way, which can be used to determine the relevant load-extension curves 
[10].  It does not, however, represent the behaviour of concrete where the confining stress comes from 
reinforcement inside, or on the surface of, the concrete. 
 Passive confinement arises when the lateral expansion of the concrete is resisted by confining 
reinforcement; the confining pressure is highly dependant upon the relationship between axial applied 
stress and the induced lateral strain.  The concrete bears the axial load because of the stress state 
induced by the lateral reinforcement.  In the ascending part of the stress-strain curve the confining 
effect is small since the lateral expansion is small, but the descending portion of the stress-strain 
response is dominated by the behaviour of the confining reinforcement that resists the lateral 
expansion, establishing a multi-axial state of stress in the core concrete.   
 
2 ACTIVELY-CONFINED CONCRETE 
 
 The analysis presented here is based on Kotsovos’ study of concrete subjected to active hydraulic 
pressure [6].  He recognised that most concrete structural members are subjected to a multi-axial 
stress state.  Kotsovos and Newman made a mathematical prediction of the stress-strain response of 
concrete in terms of the hydrostatic ( oσ ) and deviatoric ( oτ ) stress invariants [18,19].  They performed 
an extensive experimental study to obtain the stress-strain profile of concrete cylinders subjected to 
different hydraulic pressures, and proposed empirical equations.  Crack extension was identified as 
the main cause of fracture; deviatoric stress tends to give a uni-directional fracture in the direction of 
maximum compressive stress, while hydrostatic stress gives random crack propagation that reduces 
the rate of fracture caused by the deviatoric stress.  Since any state of stress can be decomposed into 
hydrostatic and deviatoric stresses, the behaviour of concrete under a generalised stress condition 
can be defined by using these components.  The work was later extended [6] by introducing the 
concept of an internal stress idσ  which allows a deviatoric stress to generate a hydrostatic strain 

)(doε . 
 By using Kotsovos’ model, the complete stress-strain profile for actively-confined concrete 
subjected to any combination of constant lateral pressures can be obtained.  The model assumes that 
the axial stress is the major principal stress 1σ , and the lateral confining stresses 2σ and 3σ are known 
(or can be assumed).  The model then gives the variation of the corresponding strains as the axial 
load changes.  Full details of the equations that underlie the method are given elsewhere [20]; the 
procedures can be summarised as follows: 

1. The values of the lateral confining stresses 2σ  and 3σ  are fixed.   
2. The value of the axial stress 1σ  that corresponds to the ultimate state is calculated. 
3. The ascending portions of the axial stress-axial strain and axial stress-lateral strain curves are 

calculated. 
4. For the post-ultimate state, the variation of the stress state iδσ  and strain state iδε ( i =1,2,3) 

can then be found. 
This formulation is applicable to concrete subjected to constant (active) confining pressure.  However, 
when concrete is surrounded by reinforcement, it is subjected to a passive confining pressure; the 
established model is not adequate since the confining pressures are not known.  
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3 PASSIVE CONFINEMENT WITH A SINGLE SPIRAL 
 
 When spiral reinforcement is used to provide lateral pressure to the concrete, the confining 
pressure varies throughout the course of loading and is dependant on the radial strain.    
 Consider a circular concrete cylinder reinforced with a single spiral whose properties are known.  
Symmetry requires that Lσσσ == 32 ; final failure is expected when the spiral snaps which is not 
usually at the peak load.  The analysis can be performed in the following steps, which are shown 
diagrammatically in Figure 2. 
 

 
 

Fig. 2  Model for passive FRP confinement. 
 

1. Compatibility between the transverse concrete strain, 2ε , and the strain of the confining spiral 

reinforcement, spε , is assumed, so spεε =2 .  The breaking strain of the spiral ( u
spε ) then 

defines the ultimate lateral strain ( u
2ε ).   

2. The relationship between the tensile stress in the spiral, spσ , and the spiral strain, spε , is 
known: 

                        2εεσ spspspsp EE ==           u
220 εε ≤≤            (1) 

 where spE  denotes the elastic modulus of the spiral. 

3. The equivalent active confining stress )( 32 σσσ ==L , is then calculated by: 
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  where spA  is the cross section area of spiral, cd  is the diameter of confined concrete, and s  

is the spiral spacing; the term ( )cds−1  reduces the confining effect as the spiral pitch 
increases and implicitly assumes that s < dc . 

4. The 1σ - 2ε  and 1σ - 1ε  curves are generated for the calculated Lσ using Kotsovos’ active 
model, as described in Section 2 above.  The axial stress 1σ  that generates the assumed 
value of 2ε  is then determined from the 1σ - 2ε curve. 

5. The corresponding value of 1ε  can then be found from the 1σ - 1ε  curve.  This represents one 
point on the passive stress-strain response of the specimen.  
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6. By repeating the procedures (2) to (5) for a range of values of spε  from 0 to u
spε , the complete 

1σ - 1ε  profile for the passively confined concrete cylinder can be established. 
 The procedure is slightly modified when steel reinforcement is used, as illustrated in Figure 3.  The 
confining stress reaches a limiting value (at *

Lσ ) when the steel reaches its yield point, but it continues 
to sustain a load as the steel yields with the confining stress remaining effectively constant.  The 
stress-strain curve of the steel-confined concrete then follows the active 11 εσ −  curve for *

Lσ . 
 

 
 

Fig. 3  Model for passive steel confinement. 
 
3.1  Results for passively confined concrete 
 All the results presented below are for a circular cylinder confined within a spiral of aramid 
reinforcement [2].  The diameter of the spiral is 90 mm, with a cross-sectional area of 5.3 mm2.  The 
effective strength of the spiral is 456 MPa at a strain of 1.53%.  The uniaxial cylinder strength of the 
concrete is varied, as is the spiral spacing. 
 

 
 

Fig. 4  Effect of varying spiral spacing -  (fc= 40 MPa, aramid spirals). 
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 The effect of varying the spiral pitch is shown in Figure 4 for concrete with a strength of 40 MPa.  
Reducing the spiral pitch increases the strain capacity of the concrete; for s below about 15 mm the 
concrete gains strength and significant enhancement of capacity is predicted for spacings of 5 mm.  
Also shown on the figure is the 11 εσ −  response for unconfined concrete as predicted by Carreira and 
Chu [21]. It can be seen that the confining reinforcement has very little effect until internal fracture 
starts to occur in the concrete with a corresponding increase in specimen volume. 
 

 
 

Fig. 5   Effect of varying concrete strength - (aramid spirals, spacing = 20 mm). 
 
 The effect of varying concrete strength is shown in Figure 5.  The spiral spacing is held constant at 
20 mm, but the concrete strength is varied from 20 MPa to 80 MPa.  (It should be noted here that 
Kotsovos’ equations are only calibrated up to 65 MPa).  As expected the stiffness increases as the 
concrete gets stronger, but the beneficial effects of the confinement are reduced; stiffer concrete 
produces less lateral expansion, so the confining stress is reduced in real terms, and even more so as 
a proportion of the concrete strength.  This shows that weaker concrete can benefit from the effects of 
confinement, but for stronger concretes the effects are much less marked.  If the objective is to 
maximise the energy dissipation by increasing the area under the stress-strain curve, then the use of a 
moderate concrete strength (≈ 40 MPa) is preferable to the use of very high strength concrete.  The 
numerical results also showed that for high-strength concrete (> 60 MPa) the spirals did not reach 
their ultimate strength, with the concrete strength reducing to negligible values before the spiral 
snapped. 
 

 
 

Fig. 6   Comparison between the use of aramid and steel spirals of different strength. 
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 The effect of using steel for confinement is shown in Figure 6 for concrete with a strength of 40 
MPa and a spiral pitch of 20 mm.  Results are shown for steel with yield strengths of 250 and 500 MPa 
(Young’s modulus 200 GPa and cross sectional area 5.3 mm2).  The additional stiffness of the steel 
increases the passive strength of the concrete above that of the aramid spirals, but when the steel 
yields no further enhancement of strength occurs and the applied stress drops rapidly. 

 
4 CONCRETE WITH TWO INTERLOCKING SPIRALS 
 
 The analysis given above applies to axi-symmetric cylinders.  For sections with overlapping 
spirals, the confining stresses 2σ  and 3σ cannot be expressed as simple functions of the spiral strain 
and will also not be equal.  Thus, the degree of confinement can be expected to vary and a method is 
required which allows the 11 εσ −  curve to be obtained for the more realistic situation. 
 One possibility is to perform a global analysis of a beam using a finite element analysis that 
incorporates Kotsovos’ model and also includes the spirals themselves as discrete elements.  In 
general applications, however, it will not be sensible to perform a finite element analysis each time; 
instead, a method is sought which allows the effects of the interlock to be taken into account more 
easily. 
 Consider the case of concrete reinforced with two interlocking spirals.  The concrete inside the 
overlapping area experiences a higher confining stress than that in the outer areas since it is under 
stress induced by both spirals simultaneously.  If the uniform confining stress induced by a single 
spiral is Lσ , then the concrete inside the interlocking area must be subjected to a stress between Lσ  
and Lσ2 .  The concrete in the outer area might also be affected by the interlocking action but the 
variation can be expected to be significantly smaller. 
 If two interlocking spirals are placed inside a rectangular column, the cross section can be divided 
into three zones; a doubly-confined area, a singly-confined area and cover concrete (see Figure 7).  
Inside the doubly-confined area of concrete, the spacing of the spiral can be idealised as being half 
that of the singly-confined area, assuming the spirals have equal pitch.  The lateral pressure on the 
inner boundary of the doubly-confined area is larger than that on the outer boundary of the singly-
confined area.  Tanaka [1] used the concept of the volumetric ratio of spirals and pointed out that the 
degree of confinement for the compression zone in the extremities of the core section confined by 
interlocking spirals may be less than that in the rest of the interlocking area.  This is due to the uneven 
lateral pressure distribution that is generated.  In order to take this into consideration, global x-y axes 
are defined and the coordinate system is applied to the layout of interlocking spirals (Figure 7).  It is 
proposed that magnifying factors k should be used to allow for the variation in confining stress in the 
two areas.  Separate factors will be used for singly-confined and doubly confined regions, with 
different factors for the x- and y-directions, giving a total of 4 factors.  They take the form:- 
 
                                    sc

XL
sc
X k×=σσ                (3) 

 
The values of Xk  and Yk  largely depend upon the ratio of the centre-to-centre distance ( spc ) of the 

two interlocking spirals to the diameter of spiral ( spd ).  Using the same pitch for the two spirals, the 
variations of the correction factor in two orthogonal directions in both the doubly-confined and singly-
confined areas can be determined by means of a one-off finite element analysis. 

The finite element analysis assumes that the concrete is linearly elastic and that each spiral 
induces a uniform inward pressure, which is equivalent to saying that the stress in the spirals is 
constant around the complete loop.  The principal stresses induced at each node in the two confined 
zones are determined, but since the orientation of the principal directions vary over the section, the 
stresses in two fixed orthogonal directions are calculated.  These are then averaged over the two 
regions to give the four values for the correction factor.  These correction factors are then used to vary 
the lateral stresses applied in the actively confined analysis. 
 A notional lateral pressure of 100 units was assumed.  The nodes along the axes of symmetry, 
and those along the spirals themselves, were specified and an automatic mesh generator then 
produced the rest of the nodes inside the spirals.  Triangular elements were adopted throughout; 
typically about 1000 elements were used.  The nodes along the axes of symmetry were restrained by 
roller support conditions to maintain symmetry (see Figure 8).  A plane-strain linear-elastic material 
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was assumed since the object of the exercise was to determine the magnitudes of the principal 
stresses everywhere. 
 

  
 

Fig. 7   Section with two interlocking spirals. 
 

Fig. 8   Layout of finite element model. 
 
 In forming the best-fit equation, spsp dc  is used as the parameter indicating the degree of 
overlapping of the spirals.  A third order least-squares fitting is used, and the magnification factors for 
the singly-confined and doubly-confined portions of concrete in the two global directions were 
determined separately [2,20].  The results are plotted in Figure 9 for 10 << spsp dc .  When 0=spsp dc , 

a complete overlap is formed and there is no singly-confined area.  When 1=spsp dc , the two spirals 
touch each other and there is no doubly-confined region. 
 

 
 

Fig. 9   Variation of magnification factors with degree of overlap of spirals. 
 
 The analysis then proceeds as before, using the appropriate k factors obtained from Figure 9; the 
revised values for the lateral stresses σ2 and σ3 are then used in the active analysis. 
 It must be stressed that in the analysis given here it is assumed that the strain in the spiral takes a 
constant average value, which is given by spε 2ε= .  This allows the assumption that the inward 

pressure from the spiral is uniform, and hence allows the use of the k factors determined from the 
finite element analysis.  If this assumption is not made it would be necessary to perform detailed finite 
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element analyses to see how the spiral strain varied around the circle each time the method was 
applied, which would be both prohibitively expensive in computer time and unnecessary. 

Figure 10 shows the passive confinement responses for a concrete with a strength of 40 MPa and 
aramid spirals with a pitch of 20 mm.  The responses for the doubly-confined concrete with four 
different csp/dsp values are shown.  There is a small variation with this factor, but it is not significant.  
Also shown are the responses for singly reinforced concrete with spacing of 20 mm and 10 mm.  The 
response for s = 10 mm is not the same as that for csp/dsp = 0.0 because of the effect of the ( )cds−1  
term; doubling the area of the spiral does not produce the same effect as halving the spacing due to 
the reduced confinement between the spirals. 
 

 
 

Fig. 10     Effect of degree of overlap on the behaviour of doubly-reinforced concrete. 
 

 When determining the overall load-extension response of an element containing all three types of 
concrete, the stress-strain curves for each element should be multiplied by the appropriate cross-
sectional area.  Due to the differences in the stress state of the singly-confined area and doubly-
confined areas, the end-points of these stress-strain curves are different.  It is postulated that the 
section reaches its failure state when the first spiral-snapping occurs, at which point the confinement 
ceases to be effective and the concrete becomes unconfined.  Therefore, the smaller strain value of 
the two end-points gives the failure strain of the concrete with interlocked spirals ( u

ccε ) (Figure 11).  
 

 
 

Fig. 11  Stress-strain curves for the three different areas. 
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5 ECCENTRIC ANALYSIS FOR CONCRETE WITH INTERLOCKING SPIRALS 
 

The analysis so far has assumed that the external force is applied axially, so that the resulting 
force is aligned with the centre of the specimen and the axial strain is uniform across the section.  
However, if this analysis is to be applied to the compression zones of beams, the strain can be 
expected to vary across the section.   
 If it is assumed that the stress-strain curves for unconfined, singly-confined and doubly-confined 
concrete, as determined above, are still valid, then it is possible to use these to determine the 
force/moment versus axial strain/curvature relationships, as required.   
 For example, to determine the ultimate value of the axial force applied at a fixed eccentricity e, the 
position of the neutral axis of the section can be varied until the resulting force and moment match the 
required eccentricity.  Failure is assumed to occur when the confined concrete reaches its ultimate 
strain ( u

ccε ).  It is assumed that when concrete is subjected to a tensile strain, it cracks and carries no 
load.  The procedure can be summarised as follows: 

1. Determine the centre of pressure from the applied force and moment. 
2. Assume a neutral axis depth, x . 
3. The concrete section is then divided into small slices; each may contain three kinds of 

elements.  By assuming that the ultimate strain of the confined concrete ( u
ccε ) is reached at 

the most confined edge, the strain at the middle of each element can be calculated. 
4. The appropriate stress-strain model for both confined and unconfined areas is then used, from 

which the corresponding stress values are determined (Figure 12). 
5. The axial force ( N ), moment ( M ) and corresponding centre of pressure are obtained by 

summing the effects of the elemental stress and the associated area. 
6. If the centre of pressure does not match the desired value, the neutral axis depth is adjusted 

and the process repeated until a satisfactory value is obtained.   
7. The curvature (κ ) and axial strain at the centre of the rectangular block ( aε ) are then 

calculated. 
 

 
 

Fig. 12  Eccentric analysis of concrete with interlocking spirals. 
 
 It should be noted that this analysis requires that the strain in the spiral varies across the depth of 
the compression zone and takes the value it would have had if a uniaxial compressive strain of the 
appropriate value were applied to the section.  This is not necessarily the case but is a reasonable 
assumption. 
 This procedure can be adapted easily to find other relationships; for example, to determine the 
moment-curvature relationship for a given location of the centre of pressure, the extreme fibre strain 
can be varied from zero up to the failure value assumed above. 
 
6 CONCLUSIONS 
 
 It has been shown that Kotsovos’ model for triaxially confined concrete can be used to determine 
the behaviour of concrete contained within passive spirals of reinforcement.  This has been applied to 
cylinders reinforced with spirals of aramid fibres and the effects of varying both the spiral pitch and the 
concrete strength have been studied.  High strength concrete does not benefit significantly from 
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confinement since it is stiffer and does not generate sufficient lateral expansion to mobilise the 
confining stress.  The best effect of confinement (in terms of the energy dissipated) is obtained for 
concretes of moderate strength. 
 The differences associated with the use of steel reinforcement have been studied.  Steel is more 
effective at providing confinement up to yield, due to the higher stiffness, but once the steel yields the 
strength drops off rapidly. 
 It has been shown that the area contained within the overlapping region of two spirals can be 
studied by the use of a finite element analysis.  This allows the effect of the varying geometry on the 
confining stresses to be determined, which can then be used in the passive model to obtain different 
stress-strain curves for the singly-confined and doubly-confined regions. 
 Finally, it has been shown how the model can be used to determine the behaviour of confined 
concrete in the compression zone of beams where the strain varies through the depth. 
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