
FRPRCS-8  University of Patras, Patras, Greece, July 16-18, 2007 

 1

 
FRACTURE MECHANICS OF PLATE DEBONDING  

 
Mithila ACHINTHA 1    Chris BURGOYNE 1  

 
1 Department of Engineering, University of Cambridge, UK 
 
Keywords: debonding, fracture mechanics, FRP, strain energy. 
 
1 INTRODUCTION 
 

The enhanced structural performance of reinforced concrete (RC) beams that have been 
strengthened by externally bonded fibre reinforced polymer (FRP) plates is strongly reliant on the 
effectiveness of the concrete-FRP interface.  Strengthened beams often fail by premature plate 
debonding [1]; an understanding of the plate debonding mechanism is of the greatest important for the 
successful application of external FRP plates on RC beams.  It is important to know where and when 
debonding initiates and the influence of parameters such as the plate curtailment location and the 
plate thickness.  Over the last decade much research has focused on the plate debonding failures, but 
a critical examination shows this problem is far from being solved.   

Two modes of plate debonding are experienced in simply-supported externally-strengthened RC 
beams [1] (Fig. 1); one initiates at a crack in the beam mid-span zone and propagates towards the 
nearest beam end, while the other initiates at a plate end and propagates inwards.  The first mode is 
termed intermediate-crack induced debonding or mid-span debonding and the second mode is plate 
end debonding.  High interfacial stresses are present in the vicinity of an existing crack and at the 
plate end, which initiate these two debonding modes.  The temptation is therefore to compute these 
interfacial stresses and compare them with interface strength properties to determine the failure loads.   

However, the debonding mechanisms of plates glued to concrete structures are proving very 
difficult to analyse.  The interface can be modeled using finite elements but it is contended that this 
procedure is doomed to failure.  A re-entrant corner leads to an infinite stress concentration, so the 
values returned by a finite element program are governed by the smallness of the elements used, and 
by unwarranted assumptions about adhesive properties which the analyst is forced to make.  

 Fracture-mechanics models, such as that due to Hutchinson and Suo [2] offer a better alternative. 
They assume that, since flaws are inevitable in the interface, what matters is whether these flaws can 
propagate to cause debonding.  When an existing flaw extends, the energy needed to form associated 
new surfaces depends on the interface fracture energy and must be compared with the energy 
released by the system, which in turn depends on the change of strain energy stored in the system.  
An essential prerequisite is thus that the energy states of the beam must be known.  
 

  
Fig. 1  Two modes of debonding. Fig. 2   Actions on longitudinal section. 

 
The energy calculations for a concrete beam require knowledge of the moment-curvature 

relationship.  It is well-known that when a RC beam cracks its stiffness does not immediately change 
to that of a section where the tension concrete can be fully disregarded.  Various empirical models, 
such as Branson’s  Ieff  concept, have been used to model this behaviour [3], primarily with a view to 
being able to predict the deflections of RC beams to check their compliance with code limits.  
However, the Branson analysis only covers the case of a cracked-elastic beam in the absence of any 
axial force. 

  The main complication inherent to a strengthened beam is that the FRP plate acts as a 
prestressing element, inducing both force and moment in the RC beam (Fig. 2).  Most existing models 
do not cope with this effect, but it is needed for an accurate determination of the strain energy.  The 
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present work extends the Branson analysis into the inelastic regime, and also takes account of the 
axial forces.   

 An overview of the proposed model is presented here, along with examples of how it can be 
used to determine the strain energy; a detailed derivation of the model together with its validation 
against test data is published elsewhere [4].  The paper describes how, once the energy state of the 
beam is known, fracture mechanics concepts can be used to answer the question “Will this existing 
interface crack extend?”  Both modes of debonding are analysed as is the effect of curtailment 
location on the debonding mode.  
 
2 FRACTURE-MECHANICS MODEL FOR PLATE DEBONDING  
 

Since flaws are inevitable in the interface, what matters is whether an existing flaw can propagate.  
The proposed model first assumes a debonding-crack of known length and orientation.  The energy 
states of the beam are computed, both in this state and when the crack is further extended by a small 
distance δx.  The energy released from the system due to the crack extension can then be determined 
from energy conservation concepts; part of this released energy is consumed to create the new 
fracture surfaces required for crack extension.  The extension of the crack will occur only if there is 
sufficient released energy to create the required new surfaces.  Thus, whether an existing debonding-
crack will propagate or not can be decided by comparing the possible available energy with the energy 
that is actually required.  The energy needed to form associated new fracture surfaces depends on the 
interface fracture energy, the determination of which is discussed in section 6.  The present discussion 
concentrates on the determination of the energy released from the system when an existing 
debonding crack extends. 
 
2.1 Energy available for debonding 

The force in the FRP plate (Fp) is chosen in such a way that the relevant compatibility condition 
between the FRP plate and the RC beam is satisfied [4].  If the FRP plate is perfectly bonded to the 
beam, then strain compatibility must be satisfied locally between the FRP plate and the strain in the 
tension fibre of the concrete.  If the FRP plate has debonded then the weaker condition has to be 
satisfied in which the extension of the plate in the debonded region is same as the extension of the 
tension fibre in the concrete.   

Thus, when the debonding-crack extends, Fp in the debonded zone may alter to retain 
compatibility.  This change in FP causes alterations in the strain and stress profiles of the relevant RC 
sections, and hence the energy states alter, releasing some energy.  At each boundary where the 
debonded and the fully-bonded zones are separated, a discontinuity in Fp can be expected since the 
computations are based on two different compatibility conditions.  Sharp discontinuities in Fp cannot 
occur so there must be a transition zone where there is some relative slip between the FRP and the 
beam.  The transition zone Fp profile depends on the difference between the two Fp values in the 
unbonded and fully-bonded areas.  In the fully-bonded region, Fp does not change unless the applied 
load changes, since the more rigorous strain compatibility condition still applies, so it is the change in 
Fp in the unbonded zone that causes variation in the Fp profile over the transition zone with a 
consequent energy release.  Expressions to determine the transition zone FP profiles are given in 
section 5; full details of the derivation are described elsewhere [5].  

Sections in both the debonded and the transition zones release energy when the crack extends, 
which must be summed to obtain the total energy release at the crack tip.  For a given section, it is 
important to know the amount of energy that is available for release. 

When a RC beam bends, energy is put into the beam by the loads, some of which is dissipated in 
the concrete, either in flexural-tension cracking or nonlinear elasticity, and by yielding of the steel 
reinforcement, whilst the rest is recoverable and stored as strain energy, shown schematically in Fig. 
3.  Thus, for a given section, only the stored strain energy that can be recovered when the beam is 
completely unloaded is active and will be responsible for the change of the energy state of the section 
upon debonding.  The moment from which the unloading takes place, and the corresponding 
unloading M-κ  relations, should be known for the determination of the strain energy. 
 
3 MOMENT-CURVATURE RELATIONSHIPS 
 

 Any calculation of the stiffness of RC beams at the working load must make some allowance for 
the tensile stresses in concrete that is partially cracked.  A detailed analysis would require knowledge 
of the exact location of the reinforcement and each of the cracks which is unknowable.  For most 
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practical purposes it has been sufficient to determine the effective stiffness of the section, or of the 
beam, using an interpolation formula.  That derived by Branson [3] is most commonly used. 
 

  
                         Fig. 3 Energy in flexure. 

 
3.1 Branson’s  Ieff  expression 

Branson derived an expression (Eq. (1)) for the effective stiffness (Ieff ) that indirectly accounts for 
tension stiffening effects of cracked concrete [3].  The stiffness is interpolated between the uncracked 
state (Iun), where the concrete is fully effective in tension, and the fully-cracked state (Ifc) where there is 
no tension stiffening.  The interpolation coefficient (K in Eqs. (1) and (2)) represents the extent of 
cracking of the section.  

 
           ( ) fcuneff IK1KII −+=                                                        (1) 
                            

              ( ) 4
appcr MMK =                                                             (2)   

 
Mcr and Mapp in Eq. (2) are the moments causing first cracking and the externally applied moment 
respectively.  Ieff   is taken as  Iun when  Mapp ≤   Mcr.  A modified form is used when an average Ieff of 
the beam is required for deflection predictions.  In this case the exponent in Eq. (1) is reduced from 4 
to 3.   Ieff  in Eq. (1) is the effective second moment of area of the equivalent transformed concrete 
section of modulus  Ec , so curvature of the section ( κ ) can be determined from:  
 

                                                  ( )effcapp IEM=κ                                                                 (3) 
 
Equations (1-3) can be used to determine the local curvature of a section and have been widely 
verified for conventional RC beams; they will now be extended to deal with the more complex problem 
of beams with external FRP plates.   
 
3.2 Branson’s model for strengthened beams  

In a strengthened section, the FRP plate can be considered as a prestressing element, inducing 
both force and moment on the original RC section, even when fully bonded.  Thus, the RC section is 
subjected to the action of a compressive force Fp (the force in the FRP plate) and an effective moment 
(Meff), both acting at the RC section’s centroid (Fig. 2).  Branson’s method will need modifying to take 
account of several factors. 

Branson’s expression (Eq. (1)) only applies to RC beams subject to pure bending, which can be 
regarded as a simple couple, so there is no need to define a particular reference axis and no need to 
worry about the distinction between the centroid and the neutral axis.  In the present study the RC 
beam has to be analysed under a moment and the axial force, so axes need to be defined.  

Branson’s concepts were primarily concerned with stiffness and are not normally used to 
determine stresses in the beam, which are assumed to be adequate since separate checks (either 
permissible stress or section strength) would also be performed.  The present method will require the 
satisfaction of a compatibility condition between the FRP and the concrete.  That means that a strong 
assumption needs to be made about the strains, and hence stresses, in the cross-section, and these 
will have to be determined from the effective stiffness [4]. 

Equation (1) was designed for applications where the beam was at the working load, so the 
stresses everywhere would be relatively low; the materials could be assumed to be linearly elastic.  
That will not be the case here, since the model is to be applied to sections that are being strengthened 
to allow them to carry loads that would have caused the original section to fail.  Some, at least, of the 
steel in the section may be yielding and the concrete stresses will be high enough that non-linearity 
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should be taken into account.  Thus, the objective is to determine the moment-curvature behaviour of 
a partially-cracked beam when being loaded and unloaded, subject to an applied moment and an axial 
force, which must satisfy compatibility conditions with the external reinforcement that may be bonded 
or unbonded, using materials which may be non-linear, all of which must sit within a nonlinear loop in 
which the force in the FRP plate is unknown. 
 
3.3 Proposed moment-curvature model for strengthened sections  

As mentioned in section 2.1, the force in the FRP plate (Fp) can only be determined by satisfying 
the relevant compatibility condition.  The equations are set up using an assumed value of Fp, and a 
solution of the nonlinear equations is found using a least square method.  The section is then 
reanalysed with the correct value of Fp to obtain the actual stress-strain distributions.  Full details of 
the equations and procedure can be found in elsewhere [4]. 

When the amount of cracking of a RC section increases, tension-stiffening eventually becomes 
ineffective.  In Branson’s model (Eq. (1)) the stiffness becomes asymptotic to the fully-cracked state, 
but never reaches it.  That model was intended to represent sections at the working load, and well 
below yield of the reinforcement.  The present model will apply to beams where the loads cause yield 
of the conventional reinforcement and which rely on the FRP for security; it can be expected that the 
fully-cracked state will be reached.  It will now be assumed that the section is fully-cracked at the 
moment causing first yielding of the tension steel (My) and a slightly modified form of the interpolation 
factor used in Eq. (1) is proposed: 
 

                               ( ) ( ) ( ){ }[ ]4
crycrapp

4
appcr MMMM1MMK −−−=                                      (4) 

This expression has the property that K is zero when Mapp = My .  When the  My : Mcr  ratio is greater 
than about 3, which would be the case for most practical RC beams, the difference between the two 
predictions is negligible and this expression avoids a discontinuity when the section yields [3]. 

Equation (4) allows the extent of cracking of a partially-cracked section at any given Mapp to be 
represented as a function of  Mcr, My and Mapp.  However, only a part of the corresponding externally 
applied moment is effective on the RC section, and hence the relevant effective moments should be 
compared.  To avoid unrealistic contributions due to varying eccentricities of the force in the FRP a 
fixed reference axis will be used for the comparison; the beam centre line is chosen and the 
corresponding effective moments are denoted as Mcr-mid, My-mid and Mapp-mid  respectively.  Thus, the 
interpolation coefficient used in the present model becomes: 
 
                    ( ) ( ) ( ){ }[ ]4

midcrmidymidcrmidapp
4

midappmidcrP MMMM1MMK −−−−−− −−−=                          (5) 
 
At higher strains the concrete is nonlinear and steel could yield, so a cracked-linear elastic analysis is 
not applicable with strengthened sections.  It is possible to define an equivalent elastic stiffness (EIeq) 
of a strengthened section for use in place of the elastic stiffness (the product of Ec and Ieff) used with 
the Branson’s concept: 

                                          κ= effeq MEI                                                 (6) 

where κ  and  Meff  are the curvature and the effective moment on the RC section about its centroid.  
κ  of uncracked and fully-cracked sections can be found from the relevant section analysis.  Meff is 
related to the externally applied moment (Mapp) by Eq. (7).   

 
                )/ α2tthFMM papappeff −++×−= (                                          (7) 
 

The depth of the RC section, and the thicknesses of the adhesive layer and the FRP plate in Eq. (7) 
are given by h, ta and tp respectively.  The centroidal axis depth is given by α , the determination of 
which can be found in elsewhere [4].  Thus, the respective EIeq of the uncracked and fully-cracked 
sections can be found.  The effective EIeq of a partially-cracked section is then interpolated by: 

 
               fceqpuneqpeff-eq EIK1EIKEI −− −+= )(                                                (8) 

 
The effective equivalent elastic stiffness (EIeq-eff) calculated from Eq. (8) is relative to the effective 

centroid of the section.  The moment (Meff) about this centroidal axis is then calculated from Eq. (7), 
and the curvature ( κ ) of the section is finally calculated from: 
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                                      effeqeff EIM −=κ                                               (9) 
 

Equation (9) allows the curvature of the section to be determined, from which the strain distribution 
across the section can be calculated.  The deflection profiles of beams can also be found by 
integration of the curvatures.  Comparisons between test data and the present model for some of the 
test specimens found from the literature show good agreement [4] (see, for example, Fig. 4); it is 
concluded that the proposed M - κ  model is accurate and reliable and thus can be extended into strain 
energy computations of strengthened beams.   
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                        Fig. 4  Strain comparison. 
 
4 STRAIN ENERGY IN A STRENGTHENED SECTION 
 

As described, the RC beam part of a strengthened section is subjected to an axial force and 
moment, while the FRP plate is under tension (Fig. 2).  Therefore, the total strain energy (SE) in a 
strengthened section consists of three parts; SE in the RC beam due to flexure (flexural SE), SE in the 
RC beam due to axial force (axial SE) and SE in the FRP plate (FRP SE).   
 
4.1   Flexural strain energy 

It is assumed that all the constituents are linear-elastic upon unloading, so the unloading M - κ  
relations are linear irrespective of the moment from which the unloading takes place, although there 
will usually be some residual curvature if the load is completely removed.  Thus, the flexural strain 
energy available in a beam segment of unit length at a given effective moment (Meff) is shown in Fig. 4 
and calculated from: 
 

                                                                 ULeffflexureE MSE κ=
2
1                                                          (10) 

 

where Meff  and κUL are the effective moment on the RC section and the corresponding change in 
curvature upon complete unloading. 
 
4.2   Axial strain energy 

A strengthened RC beam segment is subjected to a net axial compressive force of magnitude Fp 
at the section’s centroid (Fig. 2).  The axial strain energy in the segment of unit length  ((SEe)Axial ) can 
be calculated as:  

                                                                 0pAxialE εFSE
2
1

=                                                                (11) 
 

where ε0  is the change in centroidal strain upon complete unloading, which can be calculated when 
the strain profile after unloading is known [5]. 
 
4.3  Strain energy in the FRP plate 

The FRP plate is assumed to be linear-elastic so the strain energy in a unit length is: 
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where Ep and Ap are the elastic modulus and the cross sectional area of the FRP plate respectively.  
Now that the energy state of the strengthened beam segment under given external actions can be 

calculated, energy conservation can be used to determine the energy released from the segment 
when the existing debonding crack extends [5].  
 
5 PLATE DEBONDING ANALYSIS 
 

The proposed model assumes that  there must be a debonding crack present of known length at a 
given location.  The energy release rate (GR) when it extends is calculated and compared with the 
interface fracture energy (GF) to decide whether the crack will actually propagate or not.  However, the 
zones of the beam from which energy can be released should first be identified. 

 
5.1  Energy release zones for plate-end debonding  

When the FRP plate is curtailed at a nonzero moment location, the axial strain difference between 
the plate end and the concrete immediately adjacent to it (i.e. zero axial strain in the FRP and a 
nonzero strain in the concrete) causes relative slip between the two adherents in the vicinity of the 
plate end.  Thus, for a section near the plate end, the relevant Fp cannot be determined by assuming a 
unique linear strain distribution across both the beam and the plate, despite the plate still being 
“bonded” to the beam.  This slip and the corresponding shear stresses are assumed to decay in an 
exponential manner, and are significant only over a transfer zone [5, 7].  For a section outside the 
transfer zone, a linear strain distribution across both the FRP plate and the beam can be assumed 
because the plate is here fully-bonded.  

The externally applied loads on the beam are assumed to remain unchanged during crack 
extension, so for a fully-bonded section, Fp and the strain profiles, and hence the energy state, cannot 
be altered due to crack extension.  Thus, there can be no energy released from the fully-bonded 
sections.  However, the Fp profile over the transfer zone is altered by the crack extension and, as 
described in section 2.1, energy releases are expected. 
 
5.2  Identification of the energy release zones  

Figure 5 shows a strengthened beam with an assumed plate-end debonding crack AB, and the 
region BC is the relevant transfer zone.  The crack then extends by small distance δx.  Assuming that 
the transfer zone length is fixed for the given system, the zone DE is the new transfer zone.  The plate 
is unbonded over the zone AB during both stages and hence, neither the strain profiles nor the energy 
states of the relevant sections are altered by the transformation, and there is no associated energy 
release.  Similarly, there are no energy releases from the sections to the right of E (Fig. 5) as those 
are fully-bonded.  The narrow zone BD was initially within the transfer zone, and thus carried some 
force in the FRP, but after the crack extension the zone has become unbonded.   The zone CD is 
within the transfer zone for both the stages, but the Fp profiles have changed.  The narrow zone CE 
has changed from the fully-bonded state to the transfer state.  In all three regions the stress 
distribution has changed so some energy will have been released.   

The strain energy calculations of the sections with known Fp values are performed as in section 4, 
but for the sections with no effective FRP (sections within zone AB before extension and AD 
afterwards), only the flexural energy must be considered.  However, the Fp profile within the transfer 
zone, and the length of the transfer zone, are both required for the GR determination.  
  A detailed analysis of the transfer zone, taking account of all the material nonlinearities and the 
tension stiffening effects of cracked concrete is virtually impossible to perform.  Linear elastic solutions 
have been presented, for example that by Täljsten [7], which reveal that the effects of the plate-end 
slip decay exponentially.  It is however contended that within the transfer zone the stress transfer 
between the RC beam and the FRP plate primarily depends on the stiffness properties of the plate 
and the interface shear-stress/relative-slip characteristics.  Neither the material behaviour nor the 
presence of flexural cracks in the RC beam have significant effects on the interface stress transfer. 
Thus, it is believed that the Täljsten analysis [7] adequately represents the stress transfer between the 
FRP plate and the beam irrespective of the amount of nonlinearity in the concrete. 
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The force (Fp) is assumed to vary as:  
 

                                λx

0xb-pxxb-pxxs-p eFFF −

===
−=                                                 (13) 

 

where Fp-s|x=x is the value of Fp at a position x from the plate end (but within the transfer zone)  while 
Fp-b|x=x  is the value of Fp that would occur at that location if the FRP was fully-bonded. 

The associated length scale λ is defined as: 
 

                                            
ppa

a

tE
1

t
Gλ ×=                                                             (14)

     

where Ga and ta are the shear modulus and the thickness of the adhesive, and Ep and tp are the 
Young’s modulus and the thickness of the FRP plate respectively.  This is a slight simplification of the 
expression determined by Täljsten [7], but comparisons [5] with a large database of beam specimens 
covering many variations of geometric, loading and material (RC beam, FRP plate and the adhesive) 
properties, show good correlations with the more accurate Täljsten analysis and also show that a 
transfer zone length of 30 times the FRP plate thickness is a reasonable approximation; this is used in 
all subsequent analyses. 
 

 
 

Fig. 5  Energy release zones for plate end 
debonding. 

Fig. 6  Energy release zones for mid-span 
debonding. 

 
5.3    Energy release zones for mid-span debonding 

The mid-span debonding analysis is more complicated than that of the plate end debonding, 
because there exist two end regions, both fully bonded, separated by a region in which the FRP plate 
is debonded but still constrained by a compatibility condition (Fig. 6).   

At each boundary of the debonded zone, the unbonded Fp gradually reaches the fully-bonded 
value.  Thus, when the crack extends, the resultant variations in Fp over both transition zones and the 
debonded zone should be considered in the determination of the total energy released.  The values of 
Fp in the bonded zone at the boundary and in the unbonded region can be determined in a separate 
analysis, and the transition between them is assumed to vary exponentially using the same 
characteristic length λ described above.  The change in force at the boundary between the two 
regions can be positive or negative, depending on the circumstances. 

 
5.4 Energy release rate 

It is now possible to determine the energy release rate when the crack propagates.  The zones 
where energy is being dissipated (the debonded zone and the transition zones) are divided into short 
segments and the energy released from each segment due to the assumed crack extension is then 
computed.  The total energy release at the crack tip (ΔERt) is obtained by summing the individual 
energy releases in all segments.  Assuming uniform energy release during the crack extension, which 
is independent of crack length, the energy release per unit area of crack extension (GR) is:  

 

                                                  )( xbΔERG ftR δ×=                                                             (15) 
 

where bf   and  δx  are the width of the FRP plate and the horizontal-linear crack extension respectively. 
GR can then be compared with the interface fracture energy  (i.e. energy required to fracture a unit 

area of the interface, GF) to decide whether the flaw will extend or not.  If GR ≥ GF  the flaw will extend 
causing debonding; if not there is insufficient energy for the flaw to propagate.    
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6 CONCRETE-FRP INTERFACE FRACTURE ENERGY     
                                                  

It is now necessary to determine GF.  The propagation of an interface crack takes the path 
requiring least energy.  Experimental evidence confirms that concrete-FRP debonding fractures 
generally propagate through the concrete just above the interface [1,8].  It is however reported that 
due to poor surface preparation prior to plate bonding or the use of low-strength adhesives, the 
debonding fractures can propagate along the interface or within the adhesive [8].  With the availability 
of high-strength adhesives and careful surface preparation techniques, these adhesive and interface 
failures can be precluded.  Thus, the present work concentrates only on the case where the 
debonding-fractures propagate through the concrete, as this is the actual problem encountered in the 
industry.   
 
6.1   Fracture mode of the interface-concrete 

Since the debonding fractures propagate through the concrete, the interface fracture energy (GF) 
must be taken as that of the concrete.  In two-dimensional space there are three possible failure 
modes.  Mode I, the opening mode, governed by tensile stresses present at the crack tip; Mode II, the 
sliding mode, governed by shear stresses, or the mixed-mode with both tensile and shear stresses at 
the crack tip can occur in a body.  For a given material, the fracture energies of these different modes 
will not be the same.  In the vicinity of the interface, both normal and shear stresses are inevitable, so 
it is contended that the debonding fractures in the strengthened beams are governed by mixed-mode 
effects.  However, it is widely accepted that, even under mixed-mode loading conditions, concrete 
fractures grow locally in a pure Mode I state, and hence the corresponding fracture energy is the pure 
Mode I fracture energy [9].   
 
6.2  Fracture energy of concrete  

Even when checking an existing beam, it is very difficult to determine the Mode I fracture energy of 
the concrete GIc, but  a reasonable assumed value can be used. In concrete, the nonlinear fracture 
process zone (FPZ) ahead of a pre-existing crack tip is relatively large compared to the structural 
dimensions, and therefore its effects should not be neglected as is done in linear elastic fracture 
mechanics.  Material softening taking place in the FPZ should be taken into account in the estimation 
of GIc. Hillerborg’s fictitious crack model [10], which represents GIc as the area under the 
corresponding softening stress-crack surface separation (�-w) curve, is widely believed to be the best 
available simple nonlinear concrete fracture model [11].  The exact σ -w relations of a given concrete 
can only be known from direct uniaxial tensile tests.  Nevertheless, a few σ -w models which describe 
the softening curve in terms of more readily available parameters of the concrete, based on databases 
of test results, have been proposed in the literature [12-14].  The corresponding values for GIc for the 
concrete mix described in section 7 are given in Table 1.  Based on these values, 0.15 N/mm is taken 
as the GIc of the concrete used in the debonding analysis presented below.   

 
7    EXAMPLE 
 

To illustrate the application of the model, a RC beam, strengthened with a CFRP plate, loaded as  
shown in Fig. 7, has been analysed.  The compressive and the tensile strengths of the concrete are 
assumed to be 35 and 3.7 N/mm2 and the Young’s modulus and the yield stress of steel are assumed 
as 200 kN/mm2 and 530 N/mm2 respectively.  The shear modulus of the adhesive is taken as 4.2 
kN/mm2 and the Young’s modulus of the CFRP is 165 kN/mm2.  The unstrengthened capacity of the 
beam is 65 kN; after strengthening with CFRP, the failure load should be about 145 kN, assuming that 
debonding does not take place. The failure mode would have changed from an under-reinforced 
failure before strengthening to an over-reinforced mode afterwards. 
 
7.1 Plate end debonding 

Figure 8(a) shows the variation in energy release rate GR if debonding occurs at different load 
levels, for different locations of the plate curtailment position L0.  If L0 is less than about 270 mm, the 
energy release rate is less than GIc and no plate end debonding would occur before the beam reached 
its flexural capacity.  If L0 is greater than 270 mm, it is predicted that premature failure would occur at 
lower loads.  Fig 8(b) shows the failure load against L0.  A plot such as this can be used to determine 
how far the plate should extend so that additional external anchoring devices are not needed.  
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      Table 1   Fracture energy    
                        estimations 

  

Reference Softening 
  model  

 GF 
(N/mm) 

[12] bilinear  0.154 

[13] bilinear  0.162 

[14] polynomial 0.09 - 0.16                    
                     Note: All dimensions in millimetres 

 Fig. 7   Specimen dimensions and loading data. 
 
  

  

 

 

(a)  GR for different L0 and P (kN)         (b)  Failure load against L0  
Fig. 8  Plate end debonding. 

 
7.2  Mid-span debonding 

Figure 9(a) shows the energy release rate for a fracture propagating from an internal crack, one 
end of which is 100 mm from the centreline, with a crack length of ld.  This shows that if the crack 
length exceeds about 2 mm, debonding would occur towards the nearest end support at a load less 
than the strengthened capacity of the beam (145 kN).  Debonded lengths of this sort of dimension may 
well be present, and undetectable, in many practical applications.  If the initial fracture is longer than 
this, debonding will take place at lower loads. 

The possibility that the fracture might extend in the opposite direction has also been studied (as 
shown in Fig. 9(a) by dashed lines), but these show that more load, or a higher crack length, would be 
required to propagate in this direction, so it is unlikely to be critical.   

 
 

 
 

 

  
(a) GR for different crack lengths at a fixed crack 

location 
(b) Critical fracture lengths for different crack   

locations 
Fig. 9  Mid-span debonding. 
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Figure 9(b) shows contour plots of the load at which mid-span debonding will take place against 
crack length and crack location.  Short cracks that start near mid-span (on the left of the diagram), 
where the sections at the crack, and in the transfer zone, are both fully cracked.  If the crack starts 
further away from the centre-line (to the right of the diagram), the moments reduce and the extent of 
cracking in the sections is reduced and there is less strain energy that can be released.  The effect is 
that more load, or a longer crack, is needed to cause debonding. 

Studies of the detailed results show that, for shorter crack lengths, most of the strain energy 
release takes place in the transfer zone, because these are relatively long.  The results also show 
that, although the axial strain energy stored in the concrete is quite small (typically about 1% of the 
total), the contribution to the release rate can be as high as 20%.  These aspects are the objects of 
further study. 
 
8   CONCLUSIONS 
 

The study has shown that the phenomena of plate debonding can be studied by means of a 
fracture-mechanics approach, which obviates the need for a finite element analysis which would have 
dubious validity in the presence of infinite stress concentrations.  

It has been necessary to produce a modified form of Branson’s method to allow the calculation of 
the beam stiffness when the section is partially cracked and when subjected to an axial load imposed 
by the FRP plate. 

Hutchinson’s interface breakdown model has proved to be a very useful tool for the study of the 
debonding of FRP plates from concrete structures.  More work remains to be done to study the 
importance of the various parameters that influence the result.  Comparisons with experimental data in 
the literature are being undertaken. 
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