Lateral stability of long precast

concrete beams
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Modern precast concrete bridge beams are
becoming increasingly long and slender,
making them more susceptible to buckling
failure. This paper shows that once the
beam is positioned in the structure, buck-
ling failure is unlikely to occur. However,
during lifting, a beam is less stable. A
theoretical background is presented which
will allow design procedures to be derived.
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Notation

a distance of yoke attachment point from
end of beam

b distance of yoke attachment point from
centre of beam

d heam depth

I Young's modulus of concrete

G shear modulus of concrete

h height of voke to cable attachment points
ahove the centroid of the beam

/. second moment of area about the beam
section’s major axis

I second moment of area about the beam
section’s minor axis

/ St Venant's torsion constant for beam
section

ke describes support condition for lateral
torsional buckling

L length of beam

v(x) lateral deflection measured in th(‘ minor-
axis direction (which rotates with 0)

vy nitial lateral imperfection

s midspan lateral deflection along minor
axis of beam

" self-weight of beam per unit length

wey  critical self-weight of beam to cause
buckling per unit length

X distance along beam, measured from the

voke attachment point

v(xy lateral deflection measured along a fixed
axis
Vo mitial lateral imperfection

U distance of bottom fibre of beam below
centroid of beam

Tms  midspan lateral deflection measured
along an axis fixed relative to the
supports

¥ distance of shear centre below centroid of

beam
5 cable inclination angle above the horizontal
I voke inclination angle above the horizontal

I warping constant for beam section

dp magnitude of initial lateral imperfection
i rotation of beam

0 roll angle: rigid-body rotation about the

beam’s axis
o0 twist about beam axis

Kms  Midspan curvature about minor axis

Introduction

Precast, prestressed concrete beams are widel
used in construction projects where speed anc
ease of erection are important. A number of
different bridge beam sections are available,
reflecting the range of applications for which
they are ntended. The development of these
standard sections has primarily followed the
industry’s demand for in(‘reas‘ing spans from
the early inverted T- and I-sections of the
19505, through the M-heam? (introduced in the
mid-1960s), to the modern Y—bo;im"g (introduced
mn 1‘)9]) The development of the Super-Y (5Y)
heam™ in 1992 allows the construction of
bridges with spans of up to 40 m, for example
in motorway widening schemes. In the USA

45 m long beams are commonly used.” Figure 1
compares the T-10, M-10, Y-8 and SY-6 beam
sections; these are the largest beams in their
respective ranges.

2. A consequence of increasing the span has
been increased weight, so that the longest
beams are now limited by transportation con-
siderations. To maximize the span range, the
welght of modern beams has been kept to a
minimum by reducing the width of the flanges,
resulting in lower minor-axis and torsional
stiffnesses compared to older sections. But the
increased weight means that only a single beam
can be carried on a truck, whereas two or more
have been carried in the past, which allowed
them to be cross-braced to each other. It has,
hitherto, been the practice to pay little attention
to buckling considerations, since concrete
heams have always been considered to have a
large reserve of minor-axis stiffness: current
codes include only very crude stability checks.
It will be shown below that beams are now
available which, although they are stable if
built and handled properly, are in the region
where an understanding of stability p Yhenom-
ena, in particular imperfection sensitivity, is
becoming important. Any further increase in
span (bevond 40 m) or slenderness will mean
that stability will definitely become a signifi-
cant design constraint.
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1.36 m 1-40m

Fig. 1. The
development of
precast beam sections:
the T-10, M-10, Y-8
Inv T-10 M-10 Y-8 SY-8 and SY-6 beams

‘ 075m_

3. Stability checks for steel beams have
always been important and there 1s an enor-
mous literature on the subject.” ¥ But there are
important differences when considering con
crete heams: self-weight 1s much more signifi-
cant, their torsional stiffness is higher in

comparison with their minor-axis stiffness, and
the design of the prestress precludes supporting
them at positions very far from the ends. Thus
the temporary conditions, under self-weight
loading, are much more important than the
permanent loaded state, where the top slab acts
to prevent buckling.

t. During their use precast beams are
handled in a variety of ways. They must be
transported from the precast vard to the
construction site and may need to be lifted
as many as four times between the casting
bed and their final position within the
bridge.

5. Three important stages can be identified

3, 4):

i this process (Figs 2, 3,

A Yebeam being lifted in a storage vard

Hf'tinw

{ransportation
placement in structure {or in temporary
storage).

6. In recent yvears there have been a number
of fatlures of modern slender beams, which
have led to increased concern about stability
considerations. Examples include the collapse
of a 37 m long bridge heam m Bernav (France)
while heing prestressed’” and the toppling of a
30 m long Y-beam in Northumberland due to
inadequate support.”’ While these failures may
not have heen due ¢ ‘ irectly to stability prob-
lems, the relative ease with which the beams
could be toppled drew attention to the overall
stability problem. This paper draws together Fig. 3. Transportation of a pair of precast beams by road




the relevant literature and theory regarding the
stability of 1’)1‘0(,‘:1% concrete beams, and pro-
duces design charts. A companion paper'”
presents methods \Vhwh can be used by
designers to check the stability of projected
beam sections.

Support conditions

7. In each stage of a beam’s use it 1s
supported in a different way, and hence the
stahility of the heam will require several
different assessments. Figure 5 shows how
these support conditions can be modelled for
analysis and defines the parameters associated
with the models.

Stmply supported beam

8. The beam 1s simply supported at its ends,
with no overhangs. The support 1s assumed to
be at the soflit level (as shown 1n Fig. 5(a)) and
is assumed to allow rotation about the major
and mino but to prevent axial rotation
and deflection. More complex support con-
ditions could be considered, but they ar
unlikely to be used with standard precast
beams; they would need to be analysed as
special cases.

9. There 1s a potential subsidiar
i which the beam can top
it 18 supported on
bearings which :
rotation.
where, !

I axes,

iy problem,
ple sideways if
rotationally flexible

How significant minor-axis
This analysis will be described else-

Transport-supported beam

10, Beams are commonly transported by
road, where they span between a tractor unit
and a tratler (Fig. 6). The supports at either end
of the heam comprise a turntable (to allow
cornermg) and a roller (to allow for change n
slope, such as when driving up a ramp).
Various arrangements are possible, but the
normal configuration is that on the tratler unit
the roller 18 above the turntable and rotates
with the beam. However, on the tractor unit the
roller 18 below the turntab
rotate relative to

le and hence can

the heam. When extreme
corners {(such as roundabouts) are taken, Ihc
roller on the tractor can rotate so that itis i
line with the beam, giving no restraint (o L\ml
rotation. As heams get longer, such extreme
g‘mmm ries become more hikely, and should be
taken mto account in design.

11, This represents the most extreme
support condition during transportation. The
beam can be modelled as simply supported at

e end (where axial rotation is restramed) and
resting on a ball or pin at the <>1hu end, which
prevents deflection but allows rotation (Iig.
5(by). Both supports are at the sofht level.
This model will be referred to as “transport-

supported” in the subsequent analysis.

LATERAL STABILITY OF
()I\(; L()I\U D

BEAMS

Hanging beam

12, When a beam 1s lifted on site, it
typically hangs from two inclined cables on a
single crane, while 1n the precasting factory 1t
15 invariably lifted using vertical cables sup-
ported from two cranes. In either case these
cables are attached to lifting yokes at some
height above the beam’s centroid. The yokes
are i turn attached to the beam, not necessar-
ily at its ends (Fig. 5(¢c)). The yvokes can be
mclined at any angle, but are usually either
fixed to be vertical or allowed to rotate in
with the cables.

line

Previous work
13, There has been some previous work on

the stab l ty of concrete beams. Swann and

Godden'" investigated the lateral buckling of

concrete beams lifted by cables

(h-ve)
L
(a)
T R
) (h wé)
L |
{b)

and presented a

Fig. 4. A Y-beam on
temporary simple
supporls

Fig. 5. The three
support conditions for
beams considered in
this paper: (a) simply
supported at both
ends: (b) supported as
Jor transportation,
with the left-hand end
supported against
displacement, but nol
rolation: (¢) hanging
Jrom cables at an
cwilh vokes al
angle [ (in practice, fs
will be either v or 90°)

angle
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numerical method for determining how they
hehave. Baker and Edwards'™ gave a method
for analysing the non-linear behaviour of thin-
walled reinforced and prestressed beams which
might be used to analyse the stability of all
three support conditions. However, in both
cases the analysis is complicated ;md neither
paper leads to a snnpl design formula. Andes
son'® and Mast' ™% gave a simple analysis for
some special cases. That analysis differs from
the present study, since the beam was assumed
to have rotational restraint at both supports,
provided by springs, the stifiness of which was
determined by the vehicle's suspension. A
simple test on a lorry in the UK showed that its
suspension 18 an order of magnitude stiffer than
that found in the USA by Mast. An extensive
analysis of the stability problem by Lebelle!”
uses infinite series to define the buckling shape
of the beam, and does not simplify the hanging-
beam problem, as will be done here, by
separating the torsional and lateral displace-
ment components. A simplified extract from his
analysis is presented by Leonhardt.”” There is
also some work available in German®' ** but
this 1s limited in extent and difhicult to obtain.
Hansell and Winter®" and Siev®® have studied
the problems associated with loss of stiffness
due to cracking in reinforced concrete beams,
but that is not relevant to the present work.

Beam paramelers
14, The parameters used to define the
models (shown in Fig. 5) are

the beam L

e the material and section properties: the
Young's modulus £, the shear modulus G,
the second moment of area about the major
axis 1, the second moment of area about the
minor axis /,, the St Venant's torsion
constant /, the warping constant I, the
distance of the shear centre below the
beam’s centroid y,.. and the height of the
centroid above the beam soffit y,

e the height of the support &, measured
positive upwards from the beam centroid
(When simply supported or transport-
supported, the beam generally rests on its
bottom flange, and hence the support height
B -y, During lifting this dimension is
determined by the arrangement of the Jifting
vokes.)

e the self-weight of the beam w per unit
length.

e (he length of

In addition, for a hanging beam, the para-
meters include

e (he distance of the support positions from
the end of the beam, «

& the angle of the lifting cables above the
horizontal, «, zmd the angle of the vokes to
the horizontal, f.

Roller at bottom
Rotates with tractor unit, so
can become aligned with beam

Warping restraint

15, Warping is the axial distortion of a
section due o torsion,”® and is governed by the
magnitude of the warping constant I, which
has units of L This should be considered for
thin-walled sections (such as steel I-heams)
since restraint of this dcim mation effectively
mcreases the stiffness of a beam, and hence its
buckling load. The effects of beam warping
were investigated in a preliminary study,”’
where 1t was found that for a typical concrete
beam section the effects of warping restraint
are negligible. The parameter /(ET'/G]) (which
has units of length) is small compared to the
depth of the beam, which indicates that
restrained warping effects are negligible. Thus,
in the results that follow, no account has been
taken of warping effects.

Properties of material and section

16. Most of the results presented below are
expressed in non-dimensional form so they can
he applied to a variety of cross-sections.
However, certain illustrative calculations are
given for the largest heam in the SY series, the
SY-6," which is designed for spans of up to
10 m. The relevant section properties are given
in Table 1. The elastic moduli have been taken
as 2= 34 kN/mm® and G = 14-2 kN/mm®,
which are typical of the short-term values for
concrete in precast beams; since buckling is
essentially a short-term phenomenon, no allow-
ance needs to be made for creep effects.

Finite-element analysis

17. Owing to the complexity of the stability
analyses for the three different support con-
ditions, not all of which are amenable to
analytical solution, finite-element methods
have been used to produce the design charts.

Roller at top

Attached to beam, so
remains perpendicular o it

1)

Fig. 6. Details of Tthe
supports provided by
a tractor unit and
trailey during
transportation of a
beam (nole the
different arrangement!
of turntable and rolley
at the two ends, and
the possibility of loss
of rolational stiffness
al the tractor end)
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Two separate finite-element analyses were

Table 1. Properiics of beam section

performed. . A
Value for
e An eigenvalue analysis. A simple linear Symbol 5Y-6 beam
elastic model was set up for a pm"Iect o Overall beam height: m p 5
structure. An eigenvalue calculation within Height of centroid above soffi- }
.. o erght of centroid anove soflit: m b
the finite-element package allows the critical Distance of shear centre below centroid: m Yo
loads and mode shapes to be determined, Cross-sectional area: m? A
but does not, by itself, allow the imperf{ec- Second moment of area about major axis; m" I,
tion sensitivity to be considered. Second moment of area about minor axis: m’ I.
e A non-linear analysis, A I'ill'ltk-elmnenl St Venant's torsion constant: m' J
model was set up which could follow Warping constant: m I
geometric non-linearities. Iho tructure Self-weight: kN/m w

could be given some initial imperfection and
the complete load-deflection response pro-
duced. This could not give the buckling load
but could allow the form and magnitude of
the initial imperfection to be varied. This, in
turn, allowed the growth of the minor-axis
displacements to be determined so that the
stresses thereby induced could be calcu-
lated. The material was assumed to remain
linearly elastic. No account was taken of
cracking, since prevention of such cracking
would almost certainly be made a limit state
for design.

18, The finite-element models were con-
structed from two-noded, linear beam elements
aligned with the beam centroid; these elements
were able to allow the effects of warping and
the position of the shear centre to be taken into
account, although, as mdicated above, such
effects were not found to be significant. A study
of the number of elements needed for reliable
results was undertaken;® all the results pre-
sented here have heen obtained from a model
with 40 elements evenly distributed along
the beam length. The support positions were
separated from the centroid by rigid elements.

Buckling-load analysis

19. For all three support conditions, failure
may occur by elastic buckling of the beam
under its own self-weight. The critical load w.,
18 defined as the self-weight which causes
buckling of a perfect beam. This can be
compared with the actual value of the beam's
self-weight w.

20.  Parametric studies were carried out
using the eigenvalue finite-element analysis.
These invc%tiq;nvd the variation in buckling
load with the parameters @, %, b, L, El, and GJ.

Simply supported beam

21. It was found that for typical concrete
heam sections the non-dimensional buckling
load of a simply supported beam is

o5V (GIEL)

Weyp == 28T i

&)

the results quoted by

This agrees closely with
" who derives expressions of the form

Trahair,

*From reference 26.
+ From simple hand An(l]\ Sis.
T From computer analysis

7’[1
/,1> } 2l

where £ depends on the support condition.
22, For a simply supported beam £ = 9-04,

and if warping ef fccts are msignificant (as

applies here), then Trahair's results give

VIG/E

= 08

The buckling load 1s independent of the
support height & since axial rotation 1s
restrained over the supports.

Transport-supported beam

23, For the transport support condition it
was found that the non-dimensional buckling
load 18

{4)

Wer

The finite-element analysis showed this to be
mdependent of the support height h, despite
the fact that the end support on a ball does not
prevent rotation.

Hanging beam

24, The finite-element analysis showed that
the buckling load of a hanging beam is
independent of the torsional stiffness G/, and
consequently can be non-di monsmmh/cd
using the parameter 21, /L%, This is confirmed
by the mode shape, which, dlthougi it involves
a rigid-body rotation, demonstrates only a
small variation in twist along the beam.

25. Figure 7 shows the variation of the non-

dimensional buckling load with the geometry of

he beam. Each plot is for a different value of
he cable angle » and shows curves for different
non-dimensional support heights ii/L. These
give the variation in buckling load with the
non-dimensional attachment position «/f. (Note
the different scales used for the load axis on
each plot)

t
{
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26.  Similar results have been presented for
steel beams by Dux and Kitipornchai,” although
for these the buckling modes include torsional
effects. The wide flanges and thin web of a
typical steel beam give it a ratio of torsional to
tateral stiffness that is more than an order of
magnitude smaller than for a concrete beam.
(For example, a stcol 914 x 419 x 388 kg/m UB
beam has GJ/EL H while a concrete SY-6
beam has GJ/EI 6.) In consequence, for
steel heams, the tmsmn(il component of lateral
torsional buckling is important.

27. The graphs in Iig. 7 show that the
buckling load increases with the support
height, as the cables approach vertical, and as
the yoke attachment points approach the
beam’s quarter points (a/L = 0-25). The peak in
the buckling load at the heam’s quarter points
1s due to the changing mode shape as the
support position is changed.

28, Owing to the arrangement of prestress
in the heam, it 18 not normally possible to

upport a beam very far from its ends (and
certainly not at the quarter points). IEnd
support corresponds to the most critical case
for buckling and so additional plots are given
in Fig. 8 showing the buckling loads for beams
supported at ¢/L < 01,

29. These plots are intended for use as
design charts, and their use in this way will be
considered in the companion paper.'”

30, Figure 9 shows the twist component of
the buckling modes for an end-supported
hanging beam, normalized by the largest twist.
[t shows that the variation in twist is very
small. The buckling of a hanging beam can thus
be 1dealized as a rigid-body rotation about the
bottom of the cables, together with a minor-axis
buckle; this will be referred to as toppling. Such
a geometry can be studied analytically; the
results of such a study are presented else-

where.™ The equations that result are complex,
but can be solved relatively easily using, for
example, the solver in a spreadsheet. Cases
which are not covered by the charts in Fig. 8
can be solved using the results of that study.
For the cases covered by Fig. 8 the analytical
solution, despite the simplification caused by
ignoring twist, gives results which are only
fractionally different from the finite-element
r(\suhx

Comparison of buckling loads for
different support conditions

31, Table 2 gives values of the buckling
load we, for a 40 m long SY-6 beam subject to
various support conditions and compares these
values to the beam’s self-weight w using the
pzirzlmci(“ w/jwee. The buckling load for a
hanging beam 1s much smaller than that for a
simply supported or transport-supported beam.
Ihl\ 15 due to the lack of torsional restraint
about the beam’s axis, allowing it to rotate until

o 005 01 15 02 025 03 6 005 01 015 02 025 03
all all
(c) (d)

Fig. 7. Critical self-weight loads for hanging beams, for vertical vokes
(= 907), obtained using finite-element analyses. For different cable
angles « (a) o = 307, (b) o = 457 (¢) o = 607 {(d) » = 90°. The values

of a/L and /L corvespond lo the vavious supporl configurations (Fig. 5)
(note the different scales on the vertical axes)

0 N i

0 0-02 0 002 004 006 008 01

all

() (d)

004 0068 008 01
alk

Fig. 8. Design charts for delermining the buckling load of a hanging beam
supported close to ils ends (enlarged views of Fig. 7 (a)-(d) as in Fig. 7).
(@) o= 307 (b) x =45 (c) v = 607 (d) » = 90



it finds

heam

an equilibrium position.
18 thus considerably

A hanging
more likely to
buckle than a symply supported or transport-
supported beam. This support condition should
be given careful consideration when handling a
beam.

Initial-imperfection analyses
32, The buckling-load analvses described
interesting in their own right.
However, problems can arise even if the beam’s
weight than the buckling load, but is
still a significant fraction of it. In these
I imperfection can grow

above are
is less

umstances an mitial

as the load 1s apphed, which can lead to
unacceptable stresses hefore buckling occurs,

33, Non-linear finite-element models were
constructed (o establish the sensitivity of each
support condition fo mitial imperfections. The
load-deflection behaviour of the heam was
mvestigated by varying its self-weight.

The Southwell plot

34, A Southwell plot can be used to repre-
sent the load-deflection behaviour of a beam
that 1s approaching its buckling load. It 18
primarily used as an experimental tool, x‘moc 1
allows an accurate estimate to be made of
actual buckling load even if a well-defined
buckle 1s masked by mitial imperfections. [t
will be used in a different way here, although
the underlying analysis remains the same.

35 Southwell” . h()\x ed that a plot of
leflection/load against for a
neutrally stable licxu(l problem
became asymptotic 1o a smughi Ime. This line
has a gradient of 1/(critical load) and an mter-
cept on the deflection axis of vy, where vy i3
the component of the mitial in 11)0 rfection in the
buckling mode, as shown in Fig. 10(a). It should
be noted that the deflection that has to be
plotted 15 the one measured from the initial
position of the imperfect heam (’ c— 1), and not
that the perfect beam
(). In an experimental set-up, the magnitude
of the mitial imperfection often cannot be
measured directly, and has to be inferred from
the Southwell plot.

36, The Southwell construction can also be
used in reverse to pud ct tho toad ~deflection
behaviour of a neutrally stable flexural buck-
ling problem giv Ty Alum of the critical
load and the magmtud the mitial imperfec-
). The deflection v
w can be obtained

the

eflection

sucklin ng

measured f‘mm the axis of

N oon
ntude
fon, 11D

(
due to a given self-weight
from

s of
as shown in Fig.

37. 1t has been shown that ‘hv hangimg
beam buckles about the beam’s minor axis and
1s hence a fHexural buckling ;)m] ? m. ¢

(5) thus apphies to

juation
the hanging-beam case.

LATERAL STABILITY OF

I
TE BEAMS

LONG CONCRE

1.2 4
1-0
— 08
@
E
~
@
N 06
<
£
53
< 0-4
SY-6 beam h=12m
L=40m =45
a=0 {3 =90
0-2 4
0 g v 1
0 10 20 30 40

Fro. 9. The twist componen! of the buckling mode of a hanging beam

Table 2. Values of buckling load for 40 m long beam™
Buckling load w,,:
SY-6 beam (kN/m) i,
Simply supported 172 010
Transport supported 102 0-16
Hanging, » = 90 349 048
Hanging, 7 = 45 281 0-60
Self-weight 16-7

*For the hanging beams, 7= 16 m and « = 0.

However, both the transport-supported and the
simply supported beam buckle in a ] ateral
torsional manner. Allen and Bulson® (for
example) show that the lateral deflection of a
beam under lateral-torsional buckling should
be represented in the form

(6)

Thus it 18 appropriate to construct a modified
Southwell plot in which deflection (Toad)” is
plotted against deflection, giving a line with
gradient of 1/(critical load)” and an intercept
on the deflection axis of —wy.

(v-vy)iw w

Fio 10, (a) Southwell
plol showing linear
behaviour as the load
approaches its critical
value; (b) corre-
sponding load
deflection plot

N N
Self
weight
-
v-v, v v
| L
s — I = v/iw. ') - /
v, (v=wlw = viw, v, v vl = (ww,)]
(a) ()
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38, The load-deflection behaviour, obtained
in the present work from initial-imperfection
finite-element analyses, can be compared with
the behaviour predicted using Southwell plots,
constructed using the buckling load given by
the eigenvalue finite-element analyses. If this is
shown to give a good correlation, the way is
clear for a simple hand technique which obtains
the critical load from the design charts and the
mitial imperfections from measurements on
site.

Initial lateral bow

39, The first initial imperfection investi-
gated was a lateral parabolic bow. This would
typically result from variations in the force in
the prestressing tendons, which cause the beam
to deflect to one side.

Stmply supported and transpori-supported
beams

40.  Figure 11 shows load-deflection and
modified Southwell plots for an SY-6 beam
simply supported over a span of 40 m, contain-
ing an initial lateral imperfection of magnitude
50 mm, which is about twice as large as typical
measured imperfections for such beams. The
plots use the non-dimensional parameters
mids pdﬂ deflection = (v, — dg)/L and
load = wl’/\/(GJEL) (vm, is the lateral deflec-
tion of the beam at midspan, measured relative
to the supports along a fixed axis, and Jdy is the
magnitude of the initial imperfection at
midspan). The dashed lines are constructed
using equation (6) and values of the critical
load obtained from the eigenvalue finite-
element analysis, while the solid lines
the non-linear finite-element analysis.

41. The modified Southwell plot shows
the non-linear finite-element analysis to be
asymptotic to the line predicted using
equation (6), although a small discrepancy
between the gradients of the lines is apparent.
However, the modified Southwell construction
1s conservative and hence can be used to
determine the expected lateral deflection of a
beam.

42, 1t 1s the stresses in the concrete, rather
than the deflection, that will cause failure of the
beam. These, in turn, are due to curvature. To
assess the curvature of the \‘implv supported or
transport-supported beam, 1t 18 necessary to
determine the buckled shape. 'I he Rayleigh
Ritz method, ™ based on an assumed a \PProx-
imation to the buckling mode, can be used to
give an upper-bound solution for the buckling
load. By minimizing the buckling load, a close
approximation to the buckled shape can be
determined which will be sufficiently accurate
for the present purposes.

43. For the simply supported beam, assum-
ing a simple sinusoidal mode shape in both the
lateral deflection and the twist gives a buckling

g are from

WL GJIE],

0 : : : 1
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(a)
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© .
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I
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foad within 2% of that given in equation (1),
The relative magnitudes of the twist and the
lateral deflection are then related by

30 x \/ EL, -
‘, ,,,,,, T o 7)

44.  For the transport-supported beam, one

support allows rotation, which is allowed for by
assuming a mode shape of the forn
e X
y = Ay sin i Ay 7
' ‘ (®)

mx x
o) = Assin - A5~

where v, 18 the height of the shear centre
above the centroid, which will be close to the
centroid for most concrete heams.

45, If appropriate values for the constants
Ay to Ay are chosen, this mode shape gives a
buckling load within 4% of that given by
equation (4). The relative magnitudes of the
twist and midspan lateral deflection are then

given by

30 168
\m\ ) ():;()[/\/((’//E]\) """ b

Fig. 11, (a) Load
deflection behaviour
and (b) modified
Southwell plot for a
stmply supported
beam with an nitial
lateral bow of

Oy = 50 mm (solid
lines, non-linear

Jfmite-element
dashed lines

analysis;
constructed from
equalion (6))

B
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The minor-axis bending moment in a simply 5T A A c ’
supported or transport-supported beam at
midspan can then be found from equilibrium;
the self-weight bending moment about a hori-
zontal axis is wl?/8, so the minor-axis compo-
nent is wl.? sin 50/8.

46.  Thus, the maximum lateral curvature
for a simply supported or transport-supported
beam occurs at midspan and is given by

wl?sin 60

Ky = ng;}?” ( ]O)

Hanging beam 0 0-01 002 003 0.04 005
47. Figure 12 shows load-deflection and Wims = Bol/L

Southwell plots for a typical hanging beam, @

with an initial imperfection of magnitude 002 o

100 mm. {This is an extreme value for an initial
imperfection, chosen for the purposes of
illustration. A more typical initial imperfection 00154

. . . . . 0
size might be 30 mm.) Since a hanging heam Fig. 12.(a) Load

buckles laterally, the deflection parameter vy, w _ (1(]1’(%(,/101’7‘ behaviow
. g . . S : 17 (thie )
is used. This is measured along the minor axis © 20014 ’{”’/ (b) ‘S(”"//”‘ ell plot
of the beam, which rotates with the rigid-body K Jor a hanging beam

with an initial lateral
bow of 8y = 100 mm
(solid lines, non-linear
Jinite-element
analysis; dashed lines,

motion.
48, The plots show that a hanging beam 0.005

buckles in a stable manner, the load capacity

continues to increase as the deflection gets

larger (this is discussed in more detail 0 ) } } | . y
elsewhere®™). The post-buckling behaviour is 0 0-01 002 003 004 005 S'u/{/hzt{(?// prediction
positively stable (rather than neutrally stable), Wivs ~ 3oL Jrom (y.l’(”f()lml/w
which means that the results from the non- © analysis)

linear analysis are not asymptotic to the
predictions of the Southwell construction.
However, the predictions of the Southwell
construction (which are easy to determine)
are a good approximation to the accurate load
deflection response (which 1s very difhicult to
calculate) up to about w = 0-7w,, and are
conservative in that they overestimate the
associated deflection, and hence curvature,
They can thus be used as a basis for
the calculation of curvatures and
stresses. 150

49, The correct initial imperfection for use
in the Southwell construction is measured from
the support positions. Assuming a sinusoidal
initial imperfection, this is given by
Ol — sin{nae/L)). Hence, from equation (5)

do(1 — sin(na/L))
Vg T (11)
(1 - w/wer)
In the same way, the midspan curvature, which
for a sinusoidal imperfection is given by
~1*8y/L7, will also be magnified by the same
factor 1/(1 ~w/we ). A more accurate value for
the curvature can be found from equations / ,
given elsewhere.” o i ; ; ) ; ;
0 025 05 075 1-0 1-25 15

Initial support rotation Yins — Bg):m

50. The second mitial-imperfection analysis
investigated the effect of placing a simply Fig. 13. Load-deflection behaviour of a stmply supported beam resting on
supported or transport-supported beam on sup-  inclined supports e —

177

200 -

Critical load -

100 -

w: kN/m
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ports which are not level. The beam is thus
initially tilted (as shown in Fig. 13), where the
angle of Hw supports from the horizontal is x.
For the simply supported case this might occur
during erection and jacking, or because of a
combination of hearing flexibility and imperfect
placement. During transportation, road camber
would give an angled support-—a tvpical road
camber mn the UK 15 about 37, but cambers of 6
could be encountered, and I ger rotati
be envisaged on site.

51, Figure 13 shows a load-deflection plot
for a 40 m long SY-6 beam, simply supported on
inchined supports, for various support angles;
these responses have been obtained from the
non-linear finite-element analysis. As already
discussed, the simply supported bean
i a lateral-torsional manner, involving both
minor-axis displacement and twist about ihv
beam’s axis. However, for small loads (approxi-
mately w < ., /4) the torsional effects are
neglhigible, and the lateral deflection of the
heam is due to the <‘<>'np<mm11 of the load which
acts in the minor-axis direction (wsinyg). The
midspan minor-axis deflection y,, is found by
assuming that the beam is simply supported for
minor-axis bending, so that

10ns can

1 buckles

>u/ 4 \m 1
\x‘\»’l/J

Mg O =

The midspan deflection
with the beam’s self-weight for small loads.
This 1s indicated by the dashed lines in Fig,
13.

52, Figure 14 shows modified Southwell
plots for the same beam at various support
angles. These tend towards lines with gradient
1/we”. They are (‘Ivm'ly asymptotic to the same
critical foad.

53. By extrapolating the straight portion

of these plots (as in Fig. 11) the apparent
initial imperfection (dy) can be determined. It
would be convenient if &y could be predicted
from the initial support rotation y since this
would allow the load- deflection curve to be
determined without recourse to complex
However, Fig. 14 shows this not to
be the case. The value of &y increases with g,
but not uniformly.

54, It might he suspected t]
imperfection could be establi
the lateral deflection of the be
component of the load acting 1
direction, from (\qu ttion (12). Fi

o

thus increases linearly

analysis.

hat the initial
am due to the

n the minor-axis
gure 1)

shows lines corresponding to this relationsh 'p
for 167 kN/m (the self-weit >ht of an SY ¢
bcmn Ami o= e = 172 kNSm (the buck hmg‘
load of the simply supported beam). The correct

imitial imperfection lies between the two, bm
there is no easy way of estab leW this for a
particular beam, owing to the lateral torsional
behaviour of the beam. This is not particularly

shed by evaluating

100
80
T oe0 4
g
:
|
20 4
0 { 4 4 t {
o] 0-25 0-5 075 1-0 125 1.5
Vg — Ogi M
(a)
800 —
P
Forw=w, 4

600 - :
X

s

s
» Apparent

= ¥ imperfection
£ 400 1 . it
.
oS y
PE
500 L ’
200 p
- % For w = self weight:
/
X
0 f f f f {
0 1 2 3 4 5
n: degrees
(b)
surprising, since the value of dqy is the compo- Fig. 14 {a) Modified

1
nent of the iitial imperfection mode, and
should be independent of the load on the
structure. By assuming that the initial deflec-
tion 1s itself a function of the beam’s load, that
mdependence 13 lost, and no simple relationship
should he expected.

55, Allis not lost, however. It has been
shown that the buckling load of a hanging
heam 1s much lower than that of a simply
supported heam. For a beam to he lifted it must
therefore have a self-weight which
ably less than the critical load shown in Fig. 13,
and 1t will be reasonable to use equation (12) to
predict the deflection when a beam is placed on

15 consider-

inclined supports, which avoids the need to
valuate &
56, As already discussed, the curvature

must be evaluated to determine whether a heam
is likely to fail becau
The maximum
s given by

se of excessive stress in
the concrete. MINOT-ax18 Curva-

ture i

\
wl” sing

(13)
Qi 2

s

Soulthwell construction
For a stmply supported
beam resting on
mclined supports;

(b) see text
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57. These results show that a simply sup- 10. Parxker D, Borron A, and CRUICKSHANK J.
ported beam is susceptible to inclined supports, Bernay beam failure rocks French engineers. New
- . NI 00 " - (‘("‘ AN
and that for self-weights that are small in Crodl Engineer, 7 Qct. )* 93, 3-5. i
comparison with the buckling load, the deflec- 1. New Crvie, Enaineir. Poor support blamed for
. . : bridge tragedy. A\"M{' Civil Engineer, 28 Apr, 1994,
tion and stresses in the beam can be evaluated . :
H PR T . ~ rem ",\‘(,, N o e . \' = . .
n a ‘almp]c, manner, The same logic can be 12, Srrarrorn T, | Burcovne C. J. and TAYLOR
applied to a transport-supported beam. H. P. ]. Stability design of long precast concrete
beams. Proceedings of the Institution of Civil
Conclusions Engineers: Structures and Buildings, 1999, 134,
- FEL 1o Q
58. The behaviour of precast concrete 159-168.
9 Tryiecovns (1 . .
beams may be susceptible to lateral or lateral L3, ?’”"(‘“]W‘ C.J.and STRATRORT X » T )] }]’“‘1 ding of
: : Y A tations > armegs.
torsional buckling under self-weight conditions ,}f/“l/“ 1/ ‘/“}” rotationall } ‘1\‘1 bearmgs
. e Slructual Engineer, submitted.
)c(o”o the beams are stabilized by inclusion S N U
It has been s| hat there 14, Swann R AL and Goppen W, G, The lateral
v a structure. 1ds been shown that there buckling of concrete beams Htvd by cables
are 1)11(3(? principal cases which need to be The Structural Engineer, 1966, 44, 21-33.
considered: the hanging beam, the transport- 15, Baker G, and Epwarps A D, ;\ limit analysis of
supported beam and the simply supported non-linear elastic displacements of thin-walled
heam. Of these, it has been shown that the reinforced and prestressed beams. Engineering
hanging beam is the most critical case since Structures, 1985, 7, 198-203.
no restraint is provided against rigid-body 16. Annrrson AL R. Lateral stability of long pre-
rotation stressed concrete beams. PCT Jowrnal, 1971, 16,
- . . . 7.9,
59. It has been shown that a simple analysis ! . L .
L . . 17, Mast R F. Lateral *imhlllt\' of long prestressed
of the critical load can he comhbined with 8 o .
- . n . concrete beams, part 1. PCI Journal, 1989, 34,
Southwell plot analysis to allow the effects of 3453
initial imperfections to be investigated. A 18. Mast R.F. Lateral stability of long prestressed
60.  The results presented here are suitable concrete bcznns, p;m 2. PCT Journal, 1993, 38,
for use in design, using methods that will be 70-88.
12 . xe s . .
described elsewhere.'® 19, Lesriir P Stabilité élastique des poutres en
héton précontraint a égard de déversement
latéral. Ann. Batimen! el des Travaux Publics
. 5 « ; .
A(‘,\lfnoﬁle?gﬁmen“’ W ke (0 thank D 959, 141, 780-830.
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