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Abstract: This paper investigates the statistical procedures that can be used to analyze stress rupture data for aramid yarns, with a vie
to making reasonable predictions for the allowable prestress levels in parallel-lay ropes or fiber-reinforced polymer tendons for use a
prestressing tendons in concrete structures. Two existing data sets are combined and used to illustrate the principles that are bei
discussed. Arrhenius, exponential, and inverse power physical models are used with Weibull and lognormal statistical distributions. A wide
range of variations of the scale and shape parameters are analyzed. Various statistical criteria are used to reject models that are r
statistically secure, and the Kullback-Liebler and Akaike information criteria are used to further limit and rank the possible models. The
results show that there is still a large range of possible predictions for the long-term stress-rupture lifetime of aramid yarns, but also tha
statistical models are available for investigating further test work that needs to be carried out.
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Introduction tendons out of very high strength ste@ypical characteristic
strengths are in the range 1,750-2,000 M Rath carefully con-

Aramid ropes have been proposed for use as prestressing tendorilled microstructure to give good ductilit}3.5% extension at

for concrete structures, and for a number of other structural ap-failure is regarded as a minimyrtBS| 1980. .

plications (Burgoyne 1999 The attraction is their resistance to Aramid tendons are several times more expensive than steel
corrosion by water, which would allow their use as external ten- (JUngwirth and Windisch 1995but their resistance to corrosion,
dons or with much reduced concrete cover. There is, however,2Nd the consequent assurance of long-term durability, can out-

reluctance within the industry because of the known phenomenonWeigh the additional first cost if Whol_e-life costi_ng is adopted
of stress-rupture. Prestressing tendons in concrete are most sus@alaf;s agg.?urgloynet .Zoﬁ]sThﬁ keyblflglure r(tequwe(tj to dtﬁtetr'
ceptible to this type of failure because they are tensioned agains ine I'egt 't'ﬁmi ccés IS h‘? ﬁ owable ondg-bermts ress ta can
the concrete immediately after the concrete has hardened, to pro- € applied 1o the tendon, which IS governed Dy SIress-rupture.

vide the required precompression, and the high force then remainse r?éxgig:?rl\cljlfjes?%Tzlﬁlrdeinm(\e/\‘/’;}ﬁubrsi):neifgg(tjglsésltz:‘/oernzE)heeer?rgSt
in place for the lifetime of the structur@urgoyne 1990 P 9 P Y ’

The force in the tendon is altered very little by normal load- and 50 years is a common design lifetime for office buildings.
. . . Bridges are typically designed for 120-year lifetimes, but these
ings, and .'f unbonqled, as aramid tendons wo_uld(lbergoyne_ figures are notional and society feels aggrieved if buildings or
2001), the increase in stress when the structure is loaded to fallurebri0|ges need to be refurbished because of durability problems. It
is small. Final failure would be expected to occur by crushing of

h her than b - £ th q I is clearly not feasible to conduct tests for these durations before
the concrete, rather than by snapping of the tendon. A smal '®-using new materials, so extrapolation of short-term test data must

duction in stress in the tendon will occur due to creep of the he carried out. Tests carried out in testing machines rarely last for
concrete or relaxation of the tend@¢Burgoyne 1993 Conven- more than a few hours because of the expense of tying up the
tional bonded steel tendons are the most heavily stressed struCmgachine, while tests using dead weights have high capital costs
tural element in use; they are routinely stressed to 70% of the 5 take up valuable space; they rarely last more than a couple of

ultimate tensile strengttUTS), in the knowledge that creep will  yegrs,
reduce that figure to about 60% UTS in the first few months, after |ndustry wants predictions of loads to give various stress-
which it remains constar(Abeles and Bardhan-Roy 1981t is rupture lifetimes, together with associated probabilities of failure.

structurally sensible, and economically worthwhile, to make steel |f these figures are not available, or the perceived uncertainty is
too high, then conventional materials will be used instead, despite
Iassociate  Technical Professional, Kellogg Brown & Root, their shortcomings. In these days of “design, build, finance, and
Springfield Dr., Leatherhead, Surrey KT22 7NL, U.K. E-mail: operate” contracts, industry must cost-in both the real risk, due to
Nadun.Alwis@Halliburton.com material variability, and the notional risk, due to uncertainty in the
’Reader in Concrete Structures, Engineering Dept., Univ. of modeling. Uncertainty in the extrapolation method can thus have
Ca?bﬂridgev T_:“”?Eggton St Cami”dge CB2 1PZ, U(Korresponding 3 very real economic cost and can mean that a less suitable ma-
authoy. E-mail: cj eng.cam.ac.u : i H P H P
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(Budelmann and Rostasy 1993 his would then be reduced by a  Table 1. Aramid Rope Datdfrom Chambers(1986 and Guimaraes
partial safety factor that would reflect confidence in the model. A (1988]

partial safety factor of 1.15 is used for the short-term strength of gpecimen Applied stress Time to failute,
steel barg(which is easily measurgdl.4 is often used for the (metric ton3 (% ABL) (days

strength of concrete, which is more varialf@ommission 198p

These figures are the subject of considerable debate because th 85.0 0.0187
have great commercial effect; they may be lowered if the quality 85.5 0.9410
control can be demonstrated to be very high, but it is difficult to 60 86.0 0.1118
resist calls for higher figures if the extrapolation is uncertain or 60 79.5 0.0833
the consequences of failure would be catastrophic. 3 81.6 0.4181
The current investigation is part of a larger stugywis 2003 3 81.6 0.4930
into the stress-rupture behavior of aramid fibers, which includes 60 80.0 0.7889
the use of accelerated test methods such as time-temperature s 81.6 1.5851
perposition(Markovitz 1975 and the stepped isothermal method 3 81.6 3.6193
(Thornton et al. 1998 The objective of this part of the study was 3 81.6 11.490
to investigate the various statistical methods that could be used tog 81.6 18.712
extrapolate from an existing data set. It was desired to determineg, 775 0.7153
which technique gave the best fit to the existing data, and which 3 75.8 3.1925
gave the most useful predictions for the long-term stress-rupture
. - . 60 75.0 11.163
behavior. Those two aims may not be mutually compatible. 60 6.0 11.956
It should be noted that other degradation mechanisms exist, ‘ '
most notably hydrolysis and other forms of chemical attack. This 5.8 21.529
paper specifically does not address these issues, because cre@p 771 36.358
and chemical action involve different processes with different ac- 3 75.8 39.506
tivation energies. It is essential to understand the mechanisms3 75.8 45.360
separately before considering the effects of them acting together.3 771 53.200
3 75.8 72.915
1.5 73.3 3.4526
Data Set 1.5 73.3 4.9342
1.5 73.1 9.6789
The data used in this study is taken from work carried out on 1.5 73.1 17.302
parallel-lay aramid rope@arafi), manufactured by Linear Com- 1.5 73.3 25.307
posites Ltd. using Kevlar 49 fibef&ingston 1988. These ropes 1.5 73.3 45.648
retain virtually the full stiffness of the fiberglue to their parallel 1.5 67.8 35.274
structure, and barrel and spike terminations are available that can gg 68.0 155.154
develop the full strength of the ropéingston and Mattrass 15 67.6 164.759
1973. The ropes and terminations are in the same form as they, 66.8 255317

would be used in prestressing applications, which is the principal
reason for testing in this state rather than testing yarns or fibers.
Chamberg1986 carried out a series of tests on ropes with a ally these are unable to sustain the increase in load, which leads to
nominal breaking loadNBL) of 60 metric tons under hydraulic ~ complete failure. The strength of the rope is thus governed by the
loading, with the forces kept constant by a hydraulic load- presence of weak fibers. Comparisons between distributions of
maintaining system. Some of the specimens were tested in a tenfope strength and yarn strength indicate that the rope fails at a
sion testing machine; others were tested inside a steel tube used astress at which only about 2% of the yarns would have failed
a reaction frame(Chambers and Burgoyne 1990Guimaraes (Burgoyne and Mills 1996
(1988 published data pertaining to 1.5 and 3 ton parallel-lay To allow for size effects in the data, it has been found reason-
ropes. The ropes were subjected to constant loads by weightsable to normalize the stresses applied to the ropes by the actual
applied through a lever arrangemgBurgoyne and Guimaraes breaking load/ABL) in short-term tests. This has been found to
1996. The times to failure were observed; both of these data setsallow the stress-rupture data of various rope sizes to be compared
are used in this analysi@able 1. without further adjustmentAmaniampong and Burgoyne 1995
Predictions of the load that would give a mean time to failure The lifetime distribution is most simply shown by a plot of
of 100 years were made by both Chambers and Guimaraes; aapplied stres§% ABL) versus time to failure. The objective of
value of 50% of the short-term ultimate tensile strength is ac- this analysis is to investigate the possible models that can be fitted
cepted as a reasonably conservative mean value for use in desigrtp failure data to produce curves for mean time to failure and
and they both quoted 5 and 95% confidence limits on their pre- other curves with 5 and 95% confidence limits. From a commer-
dictions. After safety factors have been added, a value of 40% of cial viewpoint it would be desirable for the best model to give a
the strength has been used in codes, but it is noted that thesearrow range between the confidence limits at the low stress lev-
values are based on very little dgBakht and Faoro 1996 els that are likely to be used in practice. Models that give a wide
The ropes have short-term strengths that vary with size asrange would imply that large partial safety factors would be re-
predicted by bundle theory from the known strengths of fibers quired. However, it may be that the materials really are very
(Daniels 1945; Phoenix 1978; Amaniampong 1992; Amaniam- variable and the model that best fits the data requires large factors
pong and Burgoyne 1995When subjected to a load, the weakest of safety.
fibers fail first and shed load to the remaining elements; eventu- Other researchers(Glaser et al. 1984; Wagner et
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90 — function: R(t)=1-F(t), which represents the probability of sur-
~ o vival after a certain time.
- S 3 The probability density functiorf(t)=[dF(t)]/dt is the first
< Variation of the derivative of the cumulative distribution function. The probability
% 7ol shape parameter of failure up to a timet is the integral of the function from zero
3 tot.
£ — 50th per . . o .
e — - 5th pzr The most appropriate statistical distributions for the analysis
£ 60| - - - 95th per Variation of the . 1 of life data of aramid ropes are the Weibull and lognormal distri-
g x data scale parameter N butions(Chambers 1986; Guimaraes 1988
50t . £ The Weibull distribution is suitable for handling weakest-link
g § & é g 2 2 data(Nelson 1990. However, lognormal distributions have also
- = ‘3[ <1 .T] 2 g been used in many applications to analyze life d&@aser et
4Oo 5 10 15 20 al. 1984; Nelson 1990; Davies et al. 199t this analysis, ara-
In (life time in seconds) mid testing data are fitted to both distributions, and their suitabil-

. - . . ity is checked.
Fig. 1. Variations of scale and shape parameters with applied stress

Weibull
al. 1986; Zeifman 2001 have used aramid fibers or fiber-
impregnated composites to investigate the lifetime distributions, The Weibull distribution is used to describe product properties
and their work is rarely compared with rope data. Extensive ex- such as strengtfelectrical or mechanicalelongation, resistance,
trapolation procedures were needed to predict the long-term be-etc. Data which have a weakest link property can also be analyzed

havior at low loads. (Nelson 1990 The cumulative density function is defined by
In this analysis, aramid rope data are fitted statistically to dif- e
ferent models. A model consists of a minimum of two parameters: Fi)=1-e- Wl t=0 1)

the scale and the shape parameters. Fig. 1 shows the test data Sghere o =scale parametefsometimes called the characteristic
used, together with notional views of the scale and shape paraMiite): and g =shape parameter.

eters. Various forms of variation of these parameters with applied 11,0 exponential distribution, which is sometimes used, can be

stress are considered subsequently. ) . regarded as a special case of the Weibull distribution @itH ; it
The validities of the various models are checked using various ;s 1ot included separately in the present study.

model selection criteria: the Kullback-Leibler discrepancy crite-
rion, an approximation to this criteriofthe Akaike information
criterion, or AIQ), and the likelihood ratio confidence test.

Data can be broadly classified as observided) and cen-
sored (nonfailed. Singly censored data are relevant for aramid
rope testing, as censoring will be done if the specimen does not
fail within a certain testing period. There are no censored values
in the data set used in the present study, but the analysis is carrie
out in the knowledge that some censored data are likely to be
available in the future. Initially the data are analyzed at a fixed IN(t) — pe
stress level; that analysis is then extended to specimens loaded at FO=) | — | t
different stress levels.

Lognormal

The lognormal distribution is widely used for life data, including

metal fatigue, solid-state componer(gemiconductors, diodes,
tc), and electrical insulationgNelson 1990. The cumulative
istributive function is defined by

=0 2

e

whered(2) = (2m) V2d-712],
This is a two-parameter distribution with a scale paramgter

Statistical Distributions and a shape parametey. In life distributions,o, is expressed as

a function of the applied load. Boil, ando, are dimensionless,
Suppose that at a certain stress level, a number of samples havbecause they represdnitime).
been tested and the corresponding failure times have been ob-
served. It is then possible, by assuming a statistical distribution
for the data and using the method of maximum likelihood, to Different Life-Stress Relationships
estimate the distribution’s parameters to optimally fit the data.

Many statistical distributions can be described by a minimum It is to be expected that the scale and shape parameters will vary
of two parameters: the scale and the shape parameters. The scalgith applied stresgFig. 1). Ideally, a large number of testsay,
parameter has units of time or(time) and defines the time when  50) would be carried out at each load level, which would allow a
a certain proportion of the specimens have failed. For some dis-proper determination of the parameters at each load; cost and time
tributions the mean value is used; for others it represents a certainconstraints preclude that possibility. It is more likely that there
percentile. The shape parameter indicates the spread of data abouwtill be a small number of tests at each of a large number of stress

the scale parameter. levels as attempts are made to build up an overall picture of the
Any statistical distribution can be expressed by well-defined material's behavior.

functions such as the cumulative distribution function, the reli- The variations of the scale and shape parameters with stress

ability function, and the probability density function. The cumu- can be expressed by various life-stress relationships such as

lative distribution functior-(t) represents the probability of fail-  Arrhenius law, inverse power law, etc. There may be physical or

ing by a given timgt). An alternative is the reliability or survival ~ chemical reasons why a particular law is appropriate, but in the
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present study only the statistical properties of the distribution are
considered. It will be convenient in what follows to define a stress
factor, X, which is a measure of the external applied steegbe
form of the relationship betweex andx varies depending on the
type of model used.

Arrhenius Life-Temperature Relationship

The Arrhenius relationship is widely used to model product life as
a function of the temperatur@elson 1990 It is best suited for

chemical reactions where it is assumed that a certain amount of

external energy must be supplied to initiate the reaction. In its

normal formulation, it is assumed that the required energy is sup-

plied by increasing the temperature, which leads to the formula-
tion:

ti = Me[AH/kT] (3)
wheret;=time to failure; M is a constant that depends on the
product geometry; AH=activation energy of the reaction;
k=Boltzmann’s constant; anti=absolute temperature in Kelvin.

However, the Arrhenius concept was modified by Zhurkas
discussed in Wagner et @l.986 ] where it was assumed that both

Table 2. Definition of Stress Factor

Life relationship Stress factok

Arrhenius X=1/x
Inverse power X=In(x)
Exponential X=x

Inverse Power Relationship

An alternative to Arrhenius is the inverse power relationship,
which is widely used to model product life as a function of an
accelerating factor; here, it would be the external applied stress.
This relationship has been applied to such materials as electrical
insulation, ball and roller bearings, flash lamps, and simple metal
fatigue due to mechanical loading, etielson 1990; Meeker and
Escobar 1998

The time to failuret; of a specimen under an applied stress
can be expressed as

@)

whereN andy=parameters characteristic of the product.

stress and temperature reduce the energy barrier. In the present A stress factor can again be introduced, but this time takes the

analysis, stress takes the place of temperature if(EqgThis is
not identical to Zhurkov’'s modified Arrehenius equation, but the

form X=In(x), and as before, the Weibull scale parameteran
be related to stress by replacitgwith «; taking logs of Eq.

idea of reducing the energy barrier with external applied stress is (7) gives Eq.(6) again.

preserved. The rope would start to fail when the external load
caused creep to reach a critical statevould be replaced by the
applied load, and a different constant equivalentté/k would
apply. This would imply that thén(time) taken for failure of an
aramid specimen would apply inversely with the load. Thus,
Arrhenius’ law can be rewritten as
t=M 1N (4)
whereM’ is a constant that depends on the product geometry;
x=external applied streg86 ABL); andN is a constant.

In the Arrhenius formulation the stress factor is conveniently
given by X=1/x. Taking the natural log of Eq4) yields

In(t) =By + ByX 5

whereB, andB,; are coefficients.

Exponential Relationship

The exponential relationship is widely used for electronic compo-
nents, especially in dielectric®lelson 1990. The exponential
relationship is
t; = eovX) (8
wherewy, and+y,=parameters characteristic of the product.
The Weibull scale parametet, can be fitted to the exponen-
tial variations with stress by replacingwith o in Eqg. (8) and

making the simple substitution that the stress fagtex. Taking
natural logs again yields E@6).

The variations of the scale parameter can be described in theSummary of Variations

same way. As an example, consider variations of the Weibull
scale parameter, with the external applied stress. Replacing
with the Weibull scale parametet, in Eq.(5) gives
In(a) = By + ByX (6)
Nelson(1990 and otherdMeeker and Escobar 1998; Davies et
al. 1999 have stated that all possible variations of the scale pa-

Thus, by making different substitutions for the stress fa¥toas
shown in Table 2, all three of the life-stress relationships can be
expressed in the same wEq. (6)]. There are four variations for
the scale parametéw) that can be considered in each life-stress
relationship; these are summarized in Table 3.

rameter should be considered separately. For the purposes of sta-

tistical analysisiand with no thought as to the physical justifica-
tion there might be for such a fonrthe following variations have
been used in the analysis:

e Linear: INa)=By+B.X

» Exponential linear: Ifw)=eBo*BrX)

+ Quadratic: Ifia) =By+ B X+B,X?

« Exponential quadratic: [n):e(BO+BlX+BZXz>

Table 3. Possible Variations of Scale Parameter

Statistical variation Variations of scale parameter

Linear (L) In(a) =By +B;X
Exponential lineafEL) In(o) = eBoBrX)
Quadratic(Q) IN(a) =Bg+ By X+B,X?

Exponential quadrati¢EQ) In(«) = eBoBX+BoX%)
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Variations of Shape Parameter

Once the model coefficients have been determined as de-
scribed below, Eq(11) can be used to obtain the percentile lines

It is unreasonable to expect the shape parameter not to vary withof a life-stress distribution by substituting values ft) (say, 5,

applied stress, although there may not be a simple physical mode
for a particular form of that variation. In such cases, all possible
variations should be considered and their suitability should be
checked(Glaser et al. 1984; Nelson 1990; Meeker and Escobar
1998; Davies et al. 1999

In this analysis, the following variations are considered. For
example, the variations of the Weibull shape paramgémwith
stress factorX, are
Linear:B=Ay+A; X
+ Exponential linearp =eA0A1%
» Quadratic =Ag+AX+A,X?
« Exponential quadratig = eAo+AA2X)
whereA,, A;, andA,=coefficients.

Invariance of the shape parametprA,) with stress factor is
also considered.

In the lognormal distribution, the log meaw takes the place
of the parameter In and the standard deviatien takes the place
of the shape paramet@: All the forms of variation that are ap-
plied to the Weibull case have also been applied to the lognormal
case.

Different Models

B0, or 95%.

Determination of Model Coefficients

Maximum likelihood theory is used to estimate the model coeffi-
cients; it is versatile, as it can be used to handle both observed
(failed) and censorednonfailed data(Nelson 1990 For com-
pleteness, handling of both failed and singly censored data is de-
scribed here. However, because the test set of data contained only
completed tests, the analysis has been carried out only for failed
data. As an example these are described for the inverse power-
Weibull model, but similar techniques have been used for all the
other models.

The likelihood of a data point is expressed using the probabil-
ity density function of the Weibull distribution; the scale and the
shape parameters are assumed to vary linearly with stress factor,
X. Likelihood is the probability of failure at a data point.

It is assumed that the daftime to failure of each specimgn
are statistically independent; therefore, the product of the likeli-
hood of each data point gives the sample likelihood.

If the time to failure of a rope specimen ig then its likeli-
hood is given by the Weibull probability density function

The term “model” is used to describe a distribution with a pos- f(t) = (%)tiﬁ—le—(tilwﬁ (12

sible variation of the scale and the shape parameters with stress a

factor, X. All the models can be placed into six categories: If the specimen is singly censored, its likelinood is

1. Inverse power-Weibull,

2. Inverse power-lognormal, 1-F(t) (13

3. Arrhen!us-We|buII, whereF(t;))=cumulative distribution function of the Weibull dis-

4. Arrhenius-lognormal, tribution.

>. Exponent!aI-We|buII, and The sample likelihood can be expressed as the product of two
6. Exponential-lognormal. terms

In each category, there are 20 possible variations p

(four with the scalé five with the shapg as described previ-
ously. Thus, 120 different models are considered in this analysis.

To clarify these ideas in detail a particular model is considered
as an example; the inverse power-Weibull category using a linear
variation of the scale and the shape parametersrse power
refers to the life-stress model used, whikeibull represents the
statistical distribution assumed.

The fraction failed up to a specific time can be expressed by
the cumulative distribution function. Rearranging the terms of Eq.
(1) gives

t=af-In[1-F(t)]}** 9
Taking the natural log of Eq9) yields
In(t) =In(a) + %In{— In[1-F(t)]} (10

By assuming that lf) andB vary linearly with the stress factor
Xin Eq.(10), a general relationship can be obtained

1
In(t) =By + B;X+ ————In{-In[1 - F(t 11
(0 =Bo+ BX+ o n{-I1-FO} (1D
whereB,, By, Ay, and A;=model coefficients; and~(t) repre-
sents the fraction which failed up to tinte
It will be convenient to use the single variatfieto describe

the set of model coefficient®,, B;, Ay, andA;).

n-m
H f(t;) t;, Failure data
i=1

X

(14)

m
[I1-F) t, Singly censored data
\ i=1
wheren=total number of data points in the sample, of whioh
values are singly censored.
Similarly, the sample log likelihoo@ls) can be determined by
taking the natural log of Eq14)

n-m

U= In[f(t)]+ > In[1-F(t)]

i=1 i=1

m

(19

Substituting the probability density functiofit;) and the cumu-
lative distribution functionfF(t;) of the Weibull distribution

-exfz) +z - In(z)]+ X [-expz)] (1)

i=1

¥ = [In(R)
i=1

wherez =[In(t;) —In(«;) 1B.

In this particular example, the shape and the scale parameters,
« and 3, are both assumed to vary linearly with applied stress.
Thus, four model coefficients have to be estimatBg, B,, Ay,
andA,).
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The maximum likelihood estimat&,él,,&o, and,&1 (denoted

by é), are the coefficient values that maximize the sample log P
likelihood given by Eq.(16). The corresponding maximum log

likelihood value is denoted b)};(;. These estimators can be ob-
tained by iterative numerical optimization. This theory is used in
several statistical software packages. In this analysis the package
JMP has been used to determine the model coefficients and the
corresponding maximum log likelihood values.

>

Aq

A, is fixed
Choice between Various Models

The choice between the various models is based on an assessment

of the model parameters. These parameters can be assessed by

graphical or analytical methods. Graphical methods provide use- Az
ful information but are subjective. Analytical methods are better,
especially when several models appear to give a good fit to the
data. Four such methods are available to investigate the bes
model:

* The likelihood ratio(LR) test, .
* The likelihood ratio(LR) confidence limit check, T= 2(¢g—¢c) (18

» The Kullback-Leibler discrepancy criteridiKLD), and ~ - ) o
« The Akaike information criteriofAIC). whereyy andy;;=maximum log likelihood values of the general

and constrained-models, respectively. These can be computed nu-
merically as described earlier.

Likelihood Ratio Test The vaIue(ng—pr) can be represented gr_aphica[lyig. 2_).
Suppose the general model has two coefficieAisA,, and its

The LR test(Lawless 1982is used when two models have to be  Maximum log likelihood is denoted by, The plane(A-A;)
compared and one is a special case of the atielson 1999 and represents the model space for the general model. The constrained
can only be used to choose between models with a different num-model has fewer coefficients. A line in the plaf®—A;) repre-

ber of coefficients. Hypothesis tests can be used when the choiceents the model space for the constra}med mdeigl. 2), and its

of the best model is based on the difference between the maxi-maximum log likelihood is denoted by.. If the difference be-

mum likelihood values. tweenis, andis, is less than some critical valdg, the constrained

The model with the higher number of model coefficients is model appears to give a good fit to data; otherwise, the general
referred to as the general model; the constrained model has feweodel fits the data better.

coefficients. As an example, consider two models from the in-  Nelson (1990 states thafl can be approximated to a chi-

Fig. 2. Maximum log likelihood values of general and constrained
{nodels

verse power-Weibull category: square distributiorty?) if the number of failure data is large. is
* General model: scale parameter linear, shape parameter quathen the upper confidence limit of the chi-square distributif
dratic; and or 98% andt, is given by
e Constrained model: scale parameter linear, shape parameter
linear. t.=x(1-a,p-p’) (19

Five model coefficients are used to describe the general model, . ' . ' .
. . There is no firm rule available to define the number of failure data
whereas in the constrained model four are used. Therefore, the . . o
. . required to allow use of the chi-square distribution; therefore,
general model has one degree of freedom in comparison to the
constrained model.
The LR test assumes thptand p’ are the number of model
coefficients in the general and the constrained models, respec-,
tively, and thatp>p’. The LR test statisticA is then defined

(Lawless 1982; Nelson 199by

Nelson recommends the use of a higher valuexfésay, 98% if

there is a small number of observédiled) data in the sample.

The LR test can be summarized as follows:

If T<t,, accept the constrained model; and

If T>t,, accept the general model.

This test is only useful when the constrained model is a subset of
the general model. In the present study, a broader technique is

Sample likelihood of the constrained model, essent_ial_, as many models are available, and the obje_ctive of this
= — analysis is to find the best from the full range of candidate mod-
Sample likelihood of the general modg, els

A function T is then defined which can be related to the prob-
ability density functions of the two models
Likelihood Ratio Confidence Limit Check
T=-2In(A) (17 It is assumed here that the parameters in a model can vary lin-
early, quadraticly, or in other ways. A confidence limit check on
the likelihood ratio(LR) can be used to see whether the assumed
whence variations fit closely to the datdNelson 1990.
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For example, assume that the Weibull scale parameter is fittedthe right-hand side of Eq21) is replaced by/n. This eliminates

to a quadratic function the laborious calculations to determine tte(Q-'A)]/n. The
analysis is carried out here using both methods, and the results are
In(a) = By + By X + B,X2 (20) compared.

whereB,, B;, andB,=model coefficients.
A check is required to see whether the quadratic variation ap- gg|ection Strategy for Choice of Model
pears to give a good fit to the data. This can be done by assessing

the approximate confidence limits of the model coefficiesy, Step 1: The JMP statistical package was used to estimate the
(95% has been used in examples quoted hergaffethe confi- model coefficients, and the corresponding maximum log likeli-
dence limits include zero, it can be concluded there is No qua- nooqd estimates for each of the 120 candidate models.

dratic variation of the scale parameter; otherwise, the quadratic Step 2: A model was discarded if the confidence limits of one
variation is accepted. This test is used to select the possible varia—of the model coefficients includes zero, which implies that the
tions of the model parameters. model does not fit the data.

Step 3: For the remaining models, the minimum expected dis-
crepancy of a model was calculated using the Kullback-Leibler

Kullback-Leibler Discrepancy discrepancy method. The valﬁ@/n+[tr(ﬂr'slArs)]/n is calculated

. . for each candidate model.
The complexity of the model increases when a larger number of -
pexity 9 Step 4: As an alternative, the AIC method was used to seek the

parameters are present, and this can lead to overfitting the data. -
However, by introducing appropriate penalty forms, it is possible minimum expected discrepancy. The valig/n)+(p/n) is cal-
to compare models with a different number of parameters. Davi- culated for each candidate model.
son (2001 has outlined several types of penalty forms that can be
used to penalize the redundant parameters in a model.
In contrast to the likelihood ratio test, the Kullback-Leibler Results
discrepancy method can be used to choose between two models
that have the same number of model coefficients or where oneThe results for the KLD calculations are summarized in Table 4,
model is not a special case of the other. Using this method, theand those for the AIC are given in Table 5. The numerical calcu-
number of parameters present in a model can be sufficiently pe-lations for all models converged, but many were discarded, be-
nalized so that it can be compared with other candidate models. cause the confidence limits for one of the coefficients included
The operating model denotes the best model, and its probabil-zero; only 36 remain from the original 120 for this reason.
ity density function is denoted bfg(t,X); this is unknown at the From Table 4, the best modéexponential-Weibull; linear
start of the process and indeed never needs to be defined. Thé&cale variation; exponential-linear shape varigtiand the worst
lack of fit between the operating model and each of the candidatemodel (inverse power-lognormal; exponential-linear scale varia-
models is then compared and is termedekpected discrepancy ~ tion; constant shape variatipwere found, according to their
The method seeks the model with the smallest expected discrepKullback-Liebler Discrepancy values. Plots of mean applied
ancy. stress versus log time to failure together with 5 and 95% confi-
The properties of the operating model are unknown, so it is not dence limits for the best and worst models are shown in Figs. 3
easy to define the expected discrepaficinhart and Zucchini  and 4, respectively, for comparison. Eg2) gives the 5% per-
1986. Therefore, several empirical discrepancies are introduced centile line of the best model
based on asymptotic criter.ia. The Kullback-Leibler discrepancy In[- In(1-0.5]
(KLD) is one of these and is given by In(t) = 34 — 0.25 + — Jeor a0 (22)

Uy QA whereX=applied stres$% ABL); andt=time in seconds.
Affo(t,X) = fo(t,X)] = —+ —>— (21) A variation of the scale and the shape parameters with stress is
n n . L ,
apparent in the best model, giving apparently tight bounds on the
where predictions at low stress level@lbeit on a log time scale
whereas in the worst model the shape parameter is constant, giv-
18 PIn[f(t,X)] ing a much broader set of confidence limits.
Qe=y--> S s=1,2,...... P Confidence limits(obtained from the 95th and 5th percentile
nisi 96,96 lines) of the best and the worst models at 60% ABL are summa-
rized in Table 6. Points A and B are the confidence limits along
the logarithmic time axis. Points C and D are the confidence
)'r =12 o limits of the load axis(Figs. 3 and % Clearly the difference
30 " PE between the confidence limits of the worst model is about two
decades on the logarithmic time axis. This difference between the
6, and 6;=model coefficients;n=number of data points; and models is very significant, especially at low stress levbiow

1o <a|n[fé(tirxi)])<(9|n[f§(tixxi)]

A= =
* nz 39,

p=number of model coefficients. 50% ABL). The confidence range of the load is about 10% ABL.

For each modeu;(;/n+[tr(Q;slArs)]/n can be computed. The The worst model gives longer predicted stress-rupture life-
one that has the smallest expected discrepancy is the model whichlimes, which would be desirable if true, but gives larger uncer-
best fits the data. tainty, which would mean larger factors of safety would be re-

An approximation to the preceding criterion is referred to as quired. In contrast, the model that is statistically best gives shorter
the Akaike information criteriofAIC), where the second term of lifetimes but less apparent uncertainty.
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Table 4. Results of Kullback-Leibler Discrepancy Calculation

Candidate modelévariation of scale and shape parameters

Model category L, C L, EL L, L EL, C EL, EL EL, L
1. Inverse power-Weibull 2.3385 2.7438 2.3462 2.2087 2.7816 2.3167
0.0754 0.0885 0.0757 0.0712 0.0897 0.0747
15.1906 15.1037 15.1113 15.2009 15.1103 15.1168
2. Inverse power-lognormal 2.5147 2.8534 3.3102 2.4317 2.9015 3.3975
0.0811 0.0920 0.1068 0.0784 0.0936 0.1096
15.2005 15.1266 15.1333 15.2191 15.1365 15.1464
3. Arrhenius-Weibull D D D 2.1848 2.9116 2.3167
0.0705 0.0939 0.0747
15.2102 15.1148 15.1181
4. Arrhenius-lognormal 2.5111 2.9326 3.4165 D D D
0.0810 0.0946 0.1102
15.2110 15.1317 15.1424
5. Exponential-Weibull 2.3615 2.6561 2.3597 2.2350 2.6791 2.3220
0.0762 0.0857 0.0761 0.0721 0.0864 0.0747
15.1817 15.1005 15.1099 15.1918 15.1067 15.1155
6. Exponential-lognormal 2.5221 2.7970 D 2.4379 2.8340 3.3023
0.0814 0.0902 0.0786 0.0914 0.1065
15.1914 15.1235 15.2077 15.1321 15.1379

Note: For each combination of category and candidate models three numbers are stﬁ@m\rst)r:trace term;[tr(ﬂ,’slArs)]/n:penalty term; and

\L(‘,/n+[tr(9r‘slArS)]/n=KuIIback-LeibIer discrepancy. Bdiscarded because confidence limits for one of the coefficients included zero. The model which
has the minimum discrepancy is in bold text.

An important factor to note is that there is only a small differ- designers;(1) the mean load that would be expected to cause
ence in the KLD values for completely different models. For ex- failure after 100 years; an@) the value with only a 5% chance of
ample, the range of discrepancy values in Tables 4 and 5 is lesscausing failure in the same time. It is these values, and their
than 1%. There is no way of judging whether a 1% difference in difference(shown in the table as “Mean-5%which is likely to
the KLD values is significant. Each model is being compared with form the basis of clauses in codes of practice that limit the per-
a notional operating model, whose parameters are not known andnanent stress that will be applied to prestressing tendons. Note
cannot be determined; this means that the values of the (oo that three of the models gave results where the mean load was
similarly those of the AlGare not in themselves important. How- less than the 5% load; these models have shape factors that vary
ever, the rank order of those discriminators is a valid means of linearly with stress, and at the stress levels to cause failure after
determining which is the best model. 100 years, the shape factors are negative. They have thus been

Table 7 shows a comparison between the various models,discounted here, despite passing the earlier validity checks.
ranked in ascending order of their Kullback-Liebler discrepancy. Study of Table 7 shows that, in general, the “Mean-5%" val-
The table shows the two values of most interest to engineeringues increase as the KLD values increase. The best results are

Table 5. Results of Akaike Information Criterion Calculation

Candidate modelévariation of scale and shape parameters

Model category L, C L, EL L, L EL, C EL, EL EL, L

1. Inverse power-Weibull 468.57 465.471 466.105 469.02 465.637 466.305
15.2119 15.1442 15.1646 15.2265 15.1496 15.1711

2. Inverse power-lognormal 468.70 466.07 465.823 469.36 466.33 466.141
15.2161 15.1635 15.1556 15.2374 15.1719 15.1658

3. Arrhenius-Weibull D D D 469.33 465.646 466.344

15.2365 15.1499 15.1724

4. Arrhenius-lognormal 469.03 466.15 465.999 D D D
15.2268 15.1661 15.1613

5. Exponential-Weibull 468.27 465.46 466.047 468.71 465.63 466.259
15.2023 15.1439 15.1628 15.2165 15.1494 15.1697

6. Exponential-lognormal 468.41 466.03 D 469.00 466.26 465.972
15.12068 15.1623 15.2258 15.1697 15.1604

Note: For each combination of category and candidate models two numbers are skjewnaximum log likelihood estimation; ani/n+p/n=Akaike
information criterion(AIC), wheren=number of data points. Bdiscarded because confidence limits for one of the coefficients includes zeliaehr;
EL=exponential linear; &constant. Example: L, Elscale parameter varies linearly with stress; shape parameter varies exponential linear wjth stress
The model which has the minimum discrepancy is in bold text.

JOURNAL OF COMPOSITES FOR CONSTRUCTION © ASCE / MARCH/APRIL 2005/ 113



90=< T 90 T Y
=~ ~ x % x
~ - \
= 80r ~ ~ 80}
o m
< <
£ 70} 7o} [--- 95%ile
a 2 — 50% ile
2 - 95% ile % — - 5%ile
@ al | — 50%ile L | = data
B % — - s%ie 3 &
S x data [
< <
50t £ 50} N £ p 2 ]
5 c 5 c = > &
£ 2 § g8 &g E 2 % g ¢ >g
wob—=L. =1 =1 -l =] 2 2] sl = A - 99
0 5 10 15 20 0 5 10 15 20 25
In (life time in seconds) In (life time in seconds)
Fig. 3. Lifetime distribution of best model Fig. 4. Lifetime distribution of worst model
Conclusion

given by the Weibull distribution, and the worst results all have Techniques have been evaluated for the statistical assessment of
constant values of the shape parameter. This is perhaps not suralternative models for the stress-rupture of aramid ropes, using a
prising, because the calculations are being carried out on logset of existing data as a basis for calculation. The techniques
(times to failurg and it seems unlikely that there will be the same would allow the inclusion of censored data if that were available.
spread, when expressed as a number of decades, for loads that can Arrhenius, inverse-power, and exponential life models were
be sustained for hundreds of years, as for loads that cause failureconsidered using the Weibull and lognormal statistical distribu-
after a few seconds. Another factor that may be of note is that thetions; the scale and shape parameters following were assumed to
Arrhenius models either failed the confidence limit chéakd so vary linearly, quadraticly, and exponentially with stress.
are omitted from Table Mor lie in the middle of the table. This The maximum likelihood method was used to determine the
may indicate that the mechanism of creep rupture is not bestoptimum parameters, and the 120 different models were com-
described using the modified version of the Arrhenius equation, or pared using the likelihood ratio confidence limit check, and the
at least not as one that could be described by a single activationKullback-Leibler discrepancy criteriofKLD) or the Akaike in-
energy. formation criterion(AIC).

The final factor that emerges from Table 7 is that no one model It was found that the difference between the best and worst
emerges as a clear “best” model. Many extrapolations can bemodels varied by only 1% using the KLD or AIC methods.
made, using standard statistical techniques, with models that give  Using these methods it was possible to predict the confidence
apparently good fits to the data, yet which produce predictions limits of the models to determine the long-term stress-rupture

that vary quite significantly. The best 10 modéehich are all behavior of aramid ropes.

Weibull model$ give 5% values that range from 45.4% ABL to It was found that the exponential model, using the Weibull

55.8% ABL, and which give “Mean-5%" spreads that vary from distribution, with the scale parameter varying linearly and the
0.3% ABL to 3.8% ABL. shape parameter varying exponentially-linearly, gave the best fit

The reason for this is the lack of data with times-to-break to the data set. However, this is not regarded as the final word on
beyond one year. In the absence of such data, which is very ex-the subject, because more tests should be carried out to obtain
pensive to obtain, or in the absence of any accelerated testingstress-rupture data that can then be incorporated into the current
results that can validly be used to fill the gap between 1 year anddata set using the techniques described here.

100 years, the lack of certainty is bound to be of concern to  No attempt has been made to provide a physical explanation as
engineers who have to certify such structures for a long time. to why a particular model best fits the data.

Further accelerated testing, as describeghimis 2003 is essen- This paper was intended only to evaluate the statistical tech-

tial. niques that could be used when extrapolating stress-rupture data

Table 6. Confidence Limits in Both Stress and Time from Mean Time to Failure of Rope Loaded by 60% ABL for Best and Worst Models

Best modellexponential-Weibull, scale: L; shape: EL Worst model(inverse power-lognormal, scale: EL; shapg: C
Stress Time Stress Time
Percentile lines (% ABL) (years (% ABL) (years
5% 57.6 1.26 56.4 2.43
50% 60.0 2.79 60.0 31.66
95% 61.3 4.37 64.4 411.85

Note: L=linear; EL=exponential linear; and €constant.

114 / JOURNAL OF COMPOSITES FOR CONSTRUCTION © ASCE / MARCH/APRIL 2005



Table 7. Predicted Mean and 5% Loads To Give Stress-Rupture Failure after 100 Years, for All Models, Ranked by Their Kullback-Liebler Discrepancy
Values

Physical model Statistical model Scale parameter Shape parameter KLD Mean 5% Mean-5%
Exponential Weibull L EL 15.1005 46.519 45.572 0.947
Inverse power Weibull L EL 15.1037 50.755 50.239 0.516
Exponential Weibull EL EL 15.1067 50.850 50.019 0.831
Exponential Weibull L L 15.1099 45.446 41.622 3.824
Inverse power Weibull EL EL 15.1103 53.779 53.286 0.493
Inverse power Weibull L L 15.1113 49.969 47.608 2.361
Arrhenius Weibull EL EL 15.1148 55.775 55.460 0.315
Exponential Weibull EL L 15.1155 49.988 47.196 2.792
Inverse power Weibull EL L 15.1168 53.084 51.224 1.860
Arrhenius Weibull EL L 15.1181 55.165 53.810 1.355
Exponential Lognormal L EL 15.1235 49.540 48.424 1.116
Inverse power Lognormal L EL 15.1266 52.970 52.283 0.687
Arrhenius Lognormal L EL 15.1317 55.217 54.750 0.467
Exponential Lognormal EL EL 15.1321 53.930 53.043 0.887
Inverse power Lognormal L L 15.1333 55.009 49.952 5.057
Inverse power Lognormal EL EL 15.1365 56.092 55.504 0.588
Exponential Lognormal EL L 15.1379 54.363 55.947 a
Arrhenius Lognormal L L 15.1424 55.550 57.651 a
Inverse power Lognormal EL L 15.1464 56.478 57.814 a
Exponential Weibull L C 15.1817 46.649 34.500 12.149
Inverse power Weibull L C 15.1906 51.202 43.456 7.746
Exponential Lognormal L C 15.1914 51.743 44.251 7.492
Exponential Weibull EL C 15.1918 51.666 44114 7.552
Inverse power Weibull EL C 15.2009 54.607 49.274 5.333
Inverse power Lognormal L C 15.2050 55.009 49.952 5.057
Exponential Lognormal EL C 15.2077 56.377 51.978 4.399
Arrhenius Weibull EL C 15.2102 56.582 52.410 4172
Arrhenius Lognormal L C 15.2110 57.163 53.215 3.948
Inverse power Lognormal EL C 15.2191 58.290 54.917 3.373
Note: L=linear; EL=exponential linear; and €constant.
#Mean strength is less than 5% strength.
to useful structural lifetimes. It does not provide a definitive an- k = Boltzmann’s constant;
swer for the allowable prestress in a tendon in a concrete beam, M,M’,N = constants;
and the numerical results quoted here should not be taken as the m = number of singly censored data points in
basis for such a discussion unless further test data becomes avail- sample;
able. n = total number of data points in sample;
p,p’ = number of coefficients in general and
constrained models;
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