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Statistical Lifetime Predictions for Aramid Fibers
K. G. N. C. Alwis1 and C. J. Burgoyne2

Abstract: This paper investigates the statistical procedures that can be used to analyze stress rupture data for aramid yarns,
to making reasonable predictions for the allowable prestress levels in parallel-lay ropes or fiber-reinforced polymer tendons
prestressing tendons in concrete structures. Two existing data sets are combined and used to illustrate the principles tha
discussed. Arrhenius, exponential, and inverse power physical models are used with Weibull and lognormal statistical distributio
range of variations of the scale and shape parameters are analyzed. Various statistical criteria are used to reject models
statistically secure, and the Kullback-Liebler and Akaike information criteria are used to further limit and rank the possible mo
results show that there is still a large range of possible predictions for the long-term stress-rupture lifetime of aramid yarns, bu
statistical models are available for investigating further test work that needs to be carried out.
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Introduction

Aramid ropes have been proposed for use as prestressing te
for concrete structures, and for a number of other structura
plications ~Burgoyne 1999!. The attraction is their resistance
corrosion by water, which would allow their use as external
dons or with much reduced concrete cover. There is, how
reluctance within the industry because of the known phenom
of stress-rupture. Prestressing tendons in concrete are mos
ceptible to this type of failure because they are tensioned ag
the concrete immediately after the concrete has hardened, t
vide the required precompression, and the high force then re
in place for the lifetime of the structure~Burgoyne 1990!.

The force in the tendon is altered very little by normal lo
ings, and if unbonded, as aramid tendons would be~Burgoyne
2001!, the increase in stress when the structure is loaded to fa
is small. Final failure would be expected to occur by crushin
the concrete, rather than by snapping of the tendon. A sma
duction in stress in the tendon will occur due to creep of
concrete or relaxation of the tendon~Burgoyne 1993!. Conven-
tional bonded steel tendons are the most heavily stressed
tural element in use; they are routinely stressed to 70% o
ultimate tensile strength~UTS!, in the knowledge that creep w
reduce that figure to about 60% UTS in the first few months,
which it remains constant~Abeles and Bardhan-Roy 1981!. It is
structurally sensible, and economically worthwhile, to make
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tendons out of very high strength steel~typical characteristi
strengths are in the range 1,750–2,000 MPa!, with carefully con
trolled microstructure to give good ductility~3.5% extension a
failure is regarded as a minimum! ~BSI 1980!.

Aramid tendons are several times more expensive than
~Jungwirth and Windisch 1995!, but their resistance to corrosio
and the consequent assurance of long-term durability, can
weigh the additional first cost if whole-life costing is adop
~Balafas and Burgoyne 2003!. The key figure required to dete
mine the additional cost is the allowable long-term stress tha
be applied to the tendon, which is governed by stress-ruptu

Structural lifetimes are measured in decades. Even the
ephemeral industrial building will be expected to last for 20 ye
and 50 years is a common design lifetime for office buildi
Bridges are typically designed for 120-year lifetimes, but th
figures are notional and society feels aggrieved if building
bridges need to be refurbished because of durability problem
is clearly not feasible to conduct tests for these durations b
using new materials, so extrapolation of short-term test data
be carried out. Tests carried out in testing machines rarely la
more than a few hours because of the expense of tying u
machine, while tests using dead weights have high capital
and take up valuable space; they rarely last more than a cou
years.

Industry wants predictions of loads to give various str
rupture lifetimes, together with associated probabilities of fai
If these figures are not available, or the perceived uncertain
too high, then conventional materials will be used instead, de
their shortcomings. In these days of “design, build, finance,
operate” contracts, industry must cost-in both the real risk, d
material variability, and the notional risk, due to uncertainty in
modeling. Uncertainty in the extrapolation method can thus
a very real economic cost and can mean that a less suitabl
terial is used simply because there is more certainty abo
properties.

There is still discussion about how design values shoul
obtained from extrapolated data for stress-rupture, but a re
able approach would be to take the mean value of the lo
cause failure at the design lifetime, less a number of stan

deviations~typically 1.64!, to give a characteristic design value
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~Budelmann and Rostasy 1993!. This would then be reduced by
partial safety factor that would reflect confidence in the mode
partial safety factor of 1.15 is used for the short-term streng
steel bars~which is easily measured!; 1.4 is often used for th
strength of concrete, which is more variable~Commission 1989!.
These figures are the subject of considerable debate becaus
have great commercial effect; they may be lowered if the qu
control can be demonstrated to be very high, but it is difficu
resist calls for higher figures if the extrapolation is uncertai
the consequences of failure would be catastrophic.

The current investigation is part of a larger study~Alwis 2003!
into the stress-rupture behavior of aramid fibers, which incl
the use of accelerated test methods such as time-temperatu
perposition~Markovitz 1975! and the stepped isothermal meth
~Thornton et al. 1998!. The objective of this part of the study w
to investigate the various statistical methods that could be us
extrapolate from an existing data set. It was desired to deter
which technique gave the best fit to the existing data, and w
gave the most useful predictions for the long-term stress-ru
behavior. Those two aims may not be mutually compatible.

It should be noted that other degradation mechanisms
most notably hydrolysis and other forms of chemical attack.
paper specifically does not address these issues, because
and chemical action involve different processes with differen
tivation energies. It is essential to understand the mechan
separately before considering the effects of them acting tog

Data Set

The data used in this study is taken from work carried ou
parallel-lay aramid ropes~Parafil!, manufactured by Linear Com
posites Ltd. using Kevlar 49 fibers~Kingston 1988!. These rope
retain virtually the full stiffness of the fibers~due to their paralle
structure!, and barrel and spike terminations are available tha
develop the full strength of the rope~Kingston and Mattras
1973!. The ropes and terminations are in the same form as
would be used in prestressing applications, which is the prin
reason for testing in this state rather than testing yarns or fi

Chambers~1986! carried out a series of tests on ropes wi
nominal breaking load~NBL! of 60 metric tons under hydrau
loading, with the forces kept constant by a hydraulic lo
maintaining system. Some of the specimens were tested in
sion testing machine; others were tested inside a steel tube u
a reaction frame~Chambers and Burgoyne 1990!. Guimarae
~1988! published data pertaining to 1.5 and 3 ton parallel
ropes. The ropes were subjected to constant loads by we
applied through a lever arrangement~Burgoyne and Guimara
1996!. The times to failure were observed; both of these data
are used in this analysis~Table 1!.

Predictions of the load that would give a mean time to fai
of 100 years were made by both Chambers and Guimara
value of 50% of the short-term ultimate tensile strength is
cepted as a reasonably conservative mean value for use in d
and they both quoted 5 and 95% confidence limits on their
dictions. After safety factors have been added, a value of 40
the strength has been used in codes, but it is noted that
values are based on very little data~Bakht and Faoro 1996!.

The ropes have short-term strengths that vary with siz
predicted by bundle theory from the known strengths of fi
~Daniels 1945; Phoenix 1978; Amaniampong 1992; Aman
pong and Burgoyne 1995!. When subjected to a load, the weak

fibers fail first and shed load to the remaining elements; eventu-
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ally these are unable to sustain the increase in load, which le
complete failure. The strength of the rope is thus governed b
presence of weak fibers. Comparisons between distributio
rope strength and yarn strength indicate that the rope fails
stress at which only about 2% of the yarns would have fa
~Burgoyne and Mills 1996!.

To allow for size effects in the data, it has been found rea
able to normalize the stresses applied to the ropes by the
breaking load~ABL ! in short-term tests. This has been found
allow the stress-rupture data of various rope sizes to be com
without further adjustment~Amaniampong and Burgoyne 199!.

The lifetime distribution is most simply shown by a plot
applied stress~% ABL! versus time to failure. The objective
this analysis is to investigate the possible models that can be
to failure data to produce curves for mean time to failure
other curves with 5 and 95% confidence limits. From a com
cial viewpoint it would be desirable for the best model to giv
narrow range between the confidence limits at the low stres
els that are likely to be used in practice. Models that give a
range would imply that large partial safety factors would be
quired. However, it may be that the materials really are
variable and the model that best fits the data requires large f
of safety.

Table 1. Aramid Rope Data@from Chambers~1986! and Guimarae
~1988!#

Specimen Applied stress Time to failure,ti
~metric tons! ~% ABL! ~days!

60 85.0 0.0187

60 85.5 0.9410

60 86.0 0.1118

60 79.5 0.0833

3 81.6 0.4181

3 81.6 0.4930

60 80.0 0.7889

3 81.6 1.5851

3 81.6 3.6193

3 81.6 11.490

3 81.6 18.712

60 77.5 0.7153

3 75.8 3.1925

60 75.0 11.163

60 76.0 11.956

3 75.8 27.529

3 77.1 36.358

3 75.8 39.506

3 75.8 45.360

3 77.1 53.200

3 75.8 72.915

1.5 73.3 3.4526

1.5 73.3 4.9342

1.5 73.1 9.6789

1.5 73.1 17.302

1.5 73.3 25.307

1.5 73.3 45.648

1.5 67.8 35.274

60 68.0 155.154

1.5 67.6 164.759

3 66.8 255.317
Other researchers ~Glaser et al. 1984; Wagner et
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al. 1986; Zeifman 2001! have used aramid fibers or fib
impregnated composites to investigate the lifetime distribut
and their work is rarely compared with rope data. Extensive
trapolation procedures were needed to predict the long-term
havior at low loads.

In this analysis, aramid rope data are fitted statistically to
ferent models. A model consists of a minimum of two parame
the scale and the shape parameters. Fig. 1 shows the test d
used, together with notional views of the scale and shape p
eters. Various forms of variation of these parameters with ap
stress are considered subsequently.

The validities of the various models are checked using va
model selection criteria: the Kullback-Leibler discrepancy c
rion, an approximation to this criterion~the Akaike information
criterion, or AIC!, and the likelihood ratio confidence test.

Data can be broadly classified as observed~failed! and cen
sored ~nonfailed!. Singly censored data are relevant for ara
rope testing, as censoring will be done if the specimen doe
fail within a certain testing period. There are no censored va
in the data set used in the present study, but the analysis is c
out in the knowledge that some censored data are likely t
available in the future. Initially the data are analyzed at a fi
stress level; that analysis is then extended to specimens loa
different stress levels.

Statistical Distributions

Suppose that at a certain stress level, a number of samples
been tested and the corresponding failure times have bee
served. It is then possible, by assuming a statistical distrib
for the data and using the method of maximum likelihood
estimate the distribution’s parameters to optimally fit the dat

Many statistical distributions can be described by a minim
of two parameters: the scale and the shape parameters. Th
parameter has units of time or ln~time! and defines the time whe
a certain proportion of the specimens have failed. For some
tributions the mean value is used; for others it represents a c
percentile. The shape parameter indicates the spread of data
the scale parameter.

Any statistical distribution can be expressed by well-defi
functions such as the cumulative distribution function, the
ability function, and the probability density function. The cum
lative distribution functionFstd represents the probability of fa

Fig. 1. Variations of scale and shape parameters with applied s
ing by a given timestd. An alternative is the reliability or survival
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function: Rstd=1−Fstd, which represents the probability of s
vival after a certain timet.

The probability density functionfstd=fdFstdg /dt is the first
derivative of the cumulative distribution function. The probab
of failure up to a timet is the integral of the function from ze
to t.

The most appropriate statistical distributions for the ana
of life data of aramid ropes are the Weibull and lognormal di
butions~Chambers 1986; Guimaraes 1988!.

The Weibull distribution is suitable for handling weakest-
data~Nelson 1990!. However, lognormal distributions have a
been used in many applications to analyze life data~Glaser e
al. 1984; Nelson 1990; Davies et al. 1999!. In this analysis, ara
mid testing data are fitted to both distributions, and their suit
ity is checked.

Weibull

The Weibull distribution is used to describe product prope
such as strength~electrical or mechanical!, elongation, resistanc
etc. Data which have a weakest link property can also be ana
~Nelson 1990!. The cumulative density function is defined by

Fstd = 1 −ef− st/adgb
, t ù 0 s1d

where a5scale parameter~sometimes called the characteri
life!; andb5shape parameter.

The exponential distribution, which is sometimes used, ca
regarded as a special case of the Weibull distribution withb=1; it
is not included separately in the present study.

Lognormal

The lognormal distribution is widely used for life data, includ
metal fatigue, solid-state components~semiconductors, diode
etc.!, and electrical insulations~Nelson 1990!. The cumulative
distributive function is defined by

Fstd = fHF lnstd − me

se
GJ, t ù 0 s2d

wherefszd=s2pd−1/2ef−z2/2g.
This is a two-parameter distribution with a scale parameteme

and a shape parameterse. In life distributions,se is expressed a
a function of the applied load. Bothme andse are dimensionles
because they representlnstimed.

Different Life-Stress Relationships

It is to be expected that the scale and shape parameters wi
with applied stress~Fig. 1!. Ideally, a large number of tests~say,
50! would be carried out at each load level, which would allo
proper determination of the parameters at each load; cost an
constraints preclude that possibility. It is more likely that th
will be a small number of tests at each of a large number of s
levels as attempts are made to build up an overall picture o
material’s behavior.

The variations of the scale and shape parameters with
can be expressed by various life-stress relationships su
Arrhenius law, inverse power law, etc. There may be physic

chemical reasons why a particular law is appropriate, but in the
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present study only the statistical properties of the distribution
considered. It will be convenient in what follows to define a st
factor,X, which is a measure of the external applied stressx; the
form of the relationship betweenX andx varies depending on th
type of model used.

Arrhenius Life-Temperature Relationship

The Arrhenius relationship is widely used to model product lif
a function of the temperature~Nelson 1990!. It is best suited fo
chemical reactions where it is assumed that a certain amou
external energy must be supplied to initiate the reaction. I
normal formulation, it is assumed that the required energy is
plied by increasing the temperature, which leads to the form
tion:

ti = MefDH/kTg s3d

whereti5time to failure; M is a constant that depends on
product geometry; DH5activation energy of the reactio
k5Boltzmann’s constant; andT5absolute temperature in Kelvi

However, the Arrhenius concept was modified by Zhurkov@as
discussed in Wagner et al.~1986!# where it was assumed that bo
stress and temperature reduce the energy barrier. In the p
analysis, stress takes the place of temperature in Eq.~3!. This is
not identical to Zhurkov’s modified Arrehenius equation, but
idea of reducing the energy barrier with external applied stre
preserved. The rope would start to fail when the external
caused creep to reach a critical state.T would be replaced by th
applied load, and a different constant equivalent toDH /k would
apply. This would imply that thelnstimed taken for failure of an
aramid specimen would apply inversely with the load. T
Arrhenius’ law can be rewritten as

ti = M8efN/xg s4d

whereM8 is a constant that depends on the product geom
x5external applied stress~% ABL!; andN is a constant.

In the Arrhenius formulation the stress factor is convenie
given byX=1/x. Taking the natural log of Eq.~4! yields

lnstid = B0 + B1X s5d

whereB0 andB1 are coefficients.
The variations of the scale parameter can be described

same way. As an example, consider variations of the We
scale parameter,a, with the external applied stress. Replacinti
with the Weibull scale parameter,a, in Eq.~5! gives

lnsad = B0 + B1X s6d

Nelson~1990! and others~Meeker and Escobar 1998; Davies
al. 1999! have stated that all possible variations of the scale
rameter should be considered separately. For the purposes
tistical analysis~and with no thought as to the physical justifi
tion there might be for such a form!, the following variations hav
been used in the analysis:
• Linear: lnsad=B0+B1X
• Exponential linear: lnsad=esB0+B1Xd

• Quadratic: lnsad=B0+B1X+B2X
2

sB0+B1X+B2X2d
• Exponential quadratic: lnsad=e
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Inverse Power Relationship

An alternative to Arrhenius is the inverse power relations
which is widely used to model product life as a function of
accelerating factor; here, it would be the external applied s
This relationship has been applied to such materials as ele
insulation, ball and roller bearings, flash lamps, and simple m
fatigue due to mechanical loading, etc.~Nelson 1990; Meeker an
Escobar 1998!.

The time to failureti of a specimen under an applied stresx
can be expressed as

ti =
N

xg s7d

whereN andg5parameters characteristic of the product.
A stress factor can again be introduced, but this time take

form X=lnsxd, and as before, the Weibull scale parameter,a, can
be related to stress by replacingti with a; taking logs of Eq
~7! gives Eq.~6! again.

Exponential Relationship

The exponential relationship is widely used for electronic com
nents, especially in dielectrics~Nelson 1990!. The exponentia
relationship is

ti = esg0−g1xd s8d

whereg0 andg15parameters characteristic of the product.
The Weibull scale parameter,a, can be fitted to the expone

tial variations with stress by replacingti with a in Eq. ~8! and
making the simple substitution that the stress factorX=x. Taking
natural logs again yields Eq.~6!.

Summary of Variations

Thus, by making different substitutions for the stress factorX, as
shown in Table 2, all three of the life-stress relationships ca
expressed in the same way@Eq. ~6!#. There are four variations f
the scale parametersad that can be considered in each life-str
relationship; these are summarized in Table 3.

Table 2. Definition of Stress Factor

Life relationship Stress factor,X

Arrhenius X=1/x

Inverse power X=lnsxd
Exponential X=x

Table 3. Possible Variations of Scale Parameter

Statistical variation Variations of scale param

Linear ~L! lnsad=B0+B1X

Exponential linear~EL! lnsad=esB0+B1Xd

Quadratic~Q! lnsad=B0+B1X+B2X
2

Exponential quadratic~EQ! lnsad=esB0+B1X+B2X2d
OSITES FOR CONSTRUCTION © ASCE / MARCH/APRIL 2005 / 109
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Variations of Shape Parameter

It is unreasonable to expect the shape parameter not to vary
applied stress, although there may not be a simple physical m
for a particular form of that variation. In such cases, all poss
variations should be considered and their suitability shoul
checked~Glaser et al. 1984; Nelson 1990; Meeker and Esc
1998; Davies et al. 1999!.

In this analysis, the following variations are considered.
example, the variations of the Weibull shape parametersbd with
stress factor,X, are
• Linear:b=A0+A1X
• Exponential linear:b=esA0+A1Xd

• Quadratic:b=A0+A1X+A2X
2

• Exponential quadratic:b=esA0+A1X+A2X2d

whereA0, A1, andA25coefficients.
Invariance of the shape parametersb=A0d with stress factor i

also considered.
In the lognormal distribution, the log meanme takes the plac

of the parameter lna and the standard deviationse takes the plac
of the shape parameterb. All the forms of variation that are a
plied to the Weibull case have also been applied to the logno
case.

Different Models

The term “model” is used to describe a distribution with a p
sible variation of the scale and the shape parameters with
factor,X. All the models can be placed into six categories:
1. Inverse power-Weibull,
2. Inverse power-lognormal,
3. Arrhenius-Weibull,
4. Arrhenius-lognormal,
5. Exponential-Weibull, and
6. Exponential-lognormal.
In each category, there are 20 possible variat
sfour with the scale3 five with the shaped, as described prev
ously. Thus, 120 different models are considered in this ana

To clarify these ideas in detail a particular model is consid
as an example; the inverse power-Weibull category using a l
variation of the scale and the shape parameters.Inverse powe
refers to the life-stress model used, whileWeibull represents th
statistical distribution assumed.

The fraction failed up to a specific time can be expresse
the cumulative distribution function. Rearranging the terms of
~1! gives

t = ah− lnf1 − Fstdgj1/b s9d

Taking the natural log of Eq.~9! yields

lnstd = lnsad +
1

b
lnh− lnf1 − Fstdgj s10d

By assuming that lnsad andb vary linearly with the stress fact
X in Eq. ~10!, a general relationship can be obtained

lnstd = B0 + B1X +
1

A0 + A1X
lnh− lnf1 − Fstdgj s11d

whereB0, B1, A0, and A15model coefficients; andFstd repre-
sents the fraction which failed up to timet.

It will be convenient to use the single variableu to describe

the set of model coefficients~B0, B1, A0, andA1!.
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Once the model coefficients have been determined a
scribed below, Eq.~11! can be used to obtain the percentile li
of a life-stress distribution by substituting values forFstd ~say, 5
50, or 95%!.

Determination of Model Coefficients

Maximum likelihood theory is used to estimate the model co
cients; it is versatile, as it can be used to handle both obs
~failed! and censored~nonfailed! data ~Nelson 1990!. For com-
pleteness, handling of both failed and singly censored data
scribed here. However, because the test set of data containe
completed tests, the analysis has been carried out only for
data. As an example these are described for the inverse p
Weibull model, but similar techniques have been used for a
other models.

The likelihood of a data point is expressed using the prob
ity density function of the Weibull distribution; the scale and
shape parameters are assumed to vary linearly with stress
X. Likelihood is the probability of failure at a data point.

It is assumed that the data~time to failure of each specime!
are statistically independent; therefore, the product of the li
hood of each data point gives the sample likelihood.

If the time to failure of a rope specimen isti, then its likeli-
hood is given by the Weibull probability density function

fstid = S b

abDti
b−1e−sti/adb

s12d

If the specimen is singly censored, its likelihood is

1 − Fstid s13d

whereFstid5cumulative distribution function of the Weibull d
tribution.

The sample likelihood can be expressed as the product o
terms

L =5p
i=1

n−m

fstid ti, Failure data

3

p
i=1

m

1 − Fstid ti, Singly censored data6 s14d

wheren5total number of data points in the sample, of whichm
values are singly censored.

Similarly, the sample log likelihoodscd can be determined b
taking the natural log of Eq.~14!

c = o
i=1

n−m

lnffstidg + o
i=1

m

lnf1 − Fstidg s15d

Substituting the probability density function,fstid and the cumu
lative distribution function,Fstid of the Weibull distribution

c = o
i=1

n−m

flnsbd − expszid + zi − lnszidg + o
i=1

m

f− expszidg s16d

wherezi =flnstid−lnsaidgb.
In this particular example, the shape and the scale param

a and b, are both assumed to vary linearly with applied str
Thus, four model coefficients have to be estimated~B0, B1, A0,

andA1!.

H/APRIL 2005



log
g

b-
d in
ckage
d the

ssme
sed b
use-
tter,
o the

best

be

num-
hoice

maxi-

s is
fewer

in-

r qua

mete

odel,
, the

o the

el
spec-
d

rob-

ral
ed nu-

rained

-

d
neral

hi-

data
fore,

.

et of
ue is
f this
od-

y lin-
on

med

ned
The maximum likelihood estimatesB̂0,B̂1,Â0, andÂ1 ~denoted

by û!, are the coefficient values that maximize the sample
likelihood given by Eq.~16!. The corresponding maximum lo

likelihood value is denoted byĉû. These estimators can be o
tained by iterative numerical optimization. This theory is use
several statistical software packages. In this analysis the pa
JMP has been used to determine the model coefficients an
corresponding maximum log likelihood values.

Choice between Various Models

The choice between the various models is based on an asse
of the model parameters. These parameters can be asses
graphical or analytical methods. Graphical methods provide
ful information but are subjective. Analytical methods are be
especially when several models appear to give a good fit t
data. Four such methods are available to investigate the
model:
• The likelihood ratio~LR! test,
• The likelihood ratio~LR! confidence limit check,
• The Kullback-Leibler discrepancy criterion~KLD !, and
• The Akaike information criterion~AIC!.

Likelihood Ratio Test

The LR test~Lawless 1982! is used when two models have to
compared and one is a special case of the other~Nelson 1990! and
can only be used to choose between models with a different
ber of coefficients. Hypothesis tests can be used when the c
of the best model is based on the difference between the
mum likelihood values.

The model with the higher number of model coefficient
referred to as the general model; the constrained model has
coefficients. As an example, consider two models from the
verse power-Weibull category:
• General model: scale parameter linear, shape paramete

dratic; and
• Constrained model: scale parameter linear, shape para

linear.
Five model coefficients are used to describe the general m

whereas in the constrained model four are used. Therefore
general model has one degree of freedom in comparison t
constrained model.

The LR test assumes thatp and p8 are the number of mod
coefficients in the general and the constrained models, re
tively, and thatp.p8. The LR test statisticL is then define
~Lawless 1982; Nelson 1990! by

L =
Sample likelihood of the constrained model,Lc

Sample likelihood of the general model,Lg

A function T is then defined which can be related to the p
ability density functions of the two models

T = − 2 lnsLd s17d
whence
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T = 2sĉg − ĉcd s18d

whereĉg and ĉc5maximum log likelihood values of the gene
and constrained-models, respectively. These can be comput
merically as described earlier.

The valuesĉg−ĉcd can be represented graphically~Fig. 2!.
Suppose the general model has two coefficients,A1,A2, and its

maximum log likelihood is denoted byĉg. The planesA1–A2d
represents the model space for the general model. The const
model has fewer coefficients. A line in the planesA1–A2d repre-
sents the model space for the constrained model~Fig. 2!, and its

maximum log likelihood is denoted byĉc. If the difference be

tweenĉg andĉc is less than some critical valueta, the constraine
model appears to give a good fit to data; otherwise, the ge
model fits the data better.

Nelson ~1990! states thatT can be approximated to a c
square distributionsx2d if the number of failure data is large.a is
then the upper confidence limit of the chi-square distribution~95
or 98%! and ta is given by

ta < x2s1 − a,p − p8d s19d

There is no firm rule available to define the number of failure
required to allow use of the chi-square distribution; there
Nelson recommends the use of a higher value fora ~say, 98%! if
there is a small number of observed~failed! data in the sample

The LR test can be summarized as follows:
• If Tø ta, accept the constrained model; and
• If T. ta, accept the general model.
This test is only useful when the constrained model is a subs
the general model. In the present study, a broader techniq
essential, as many models are available, and the objective o
analysis is to find the best from the full range of candidate m
els.

Likelihood Ratio Confidence Limit Check

It is assumed here that the parameters in a model can var
early, quadraticly, or in other ways. A confidence limit check
the likelihood ratio~LR! can be used to see whether the assu

Fig. 2. Maximum log likelihood values of general and constrai
models
variations fit closely to the data~Nelson 1990!.
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For example, assume that the Weibull scale parameter is
to a quadratic function

lnsad = B0 + B1X + B2X
2 s20d

whereB0, B1, andB25model coefficients.
A check is required to see whether the quadratic variation

pears to give a good fit to the data. This can be done by asse
the approximate confidence limits of the model coefficientB2

~95% has been used in examples quoted hereafter!. If the confi-
dence limits include zero, it can be concluded there is no
dratic variation of the scale parameter; otherwise, the quad
variation is accepted. This test is used to select the possible
tions of the model parameters.

Kullback-Leibler Discrepancy

The complexity of the model increases when a larger numb
parameters are present, and this can lead to overfitting the
However, by introducing appropriate penalty forms, it is poss
to compare models with a different number of parameters. D
son~2001! has outlined several types of penalty forms that ca
used to penalize the redundant parameters in a model.

In contrast to the likelihood ratio test, the Kullback-Leib
discrepancy method can be used to choose between two m
that have the same number of model coefficients or where
model is not a special case of the other. Using this method
number of parameters present in a model can be sufficientl
nalized so that it can be compared with other candidate mo

The operating model denotes the best model, and its prob
ity density function is denoted byf0st ,Xd; this is unknown at th
start of the process and indeed never needs to be defined
lack of fit between the operating model and each of the cand
models is then compared and is termed theexpected discrepanc.
The method seeks the model with the smallest expected dis
ancy.

The properties of the operating model are unknown, so it i
easy to define the expected discrepancy~Linhart and Zucchin
1986!. Therefore, several empirical discrepancies are introd
based on asymptotic criteria. The Kullback-Leibler discrepa
~KLD ! is one of these and is given by

Dffost,Xd − fust,Xdg =
ĉû

n
+

trsVrs
−1Arsd
n

s21d

where

Vrs =H−
1

no
i=1

n
]2 lnff ûsti,Xidg

]ur ] us
:r,s= 1,2,……,pJ

Ars =H1

no
i=1

n S ] lnff ûsti,Xidg

]ur
DS ] lnff ûsti,Xidg

]us
D:r,s= 1,2,… . . pJ

ur and us5model coefficients;n5number of data points; an
p5number of model coefficients.

For each modelĉû /n+ftrsVrs
−1Arsdg /n can be computed. Th

one that has the smallest expected discrepancy is the model
best fits the data.

An approximation to the preceding criterion is referred to

the Akaike information criterion~AIC!, where the second term of

112 / JOURNAL OF COMPOSITES FOR CONSTRUCTION © ASCE / MARC
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the right-hand side of Eq.~21! is replaced byp/n. This eliminate
the laborious calculations to determine theftrsVrs

−1Arsdg /n. The
analysis is carried out here using both methods, and the resu
compared.

Selection Strategy for Choice of Model

Step 1: The JMP statistical package was used to estima
model coefficients, and the corresponding maximum log li
hood estimates for each of the 120 candidate models.

Step 2: A model was discarded if the confidence limits of
of the model coefficients includes zero, which implies that
model does not fit the data.

Step 3: For the remaining models, the minimum expected
crepancy of a model was calculated using the Kullback-Le

discrepancy method. The valueĉû /n+ftrsVrs
−1Arsdg /n is calculated

for each candidate model.
Step 4: As an alternative, the AIC method was used to see

minimum expected discrepancy. The valuesĉû /nd+sp/nd is cal-
culated for each candidate model.

Results

The results for the KLD calculations are summarized in Tab
and those for the AIC are given in Table 5. The numerical ca
lations for all models converged, but many were discarded
cause the confidence limits for one of the coefficients inclu
zero; only 36 remain from the original 120 for this reason.

From Table 4, the best model~exponential-Weibull; linea
scale variation; exponential-linear shape variation! and the wors
model ~inverse power-lognormal; exponential-linear scale va
tion; constant shape variation! were found, according to the
Kullback-Liebler Discrepancy values. Plots of mean app
stress versus log time to failure together with 5 and 95% c
dence limits for the best and worst models are shown in Fi
and 4, respectively, for comparison. Eq.~22! gives the 5% pe
centile line of the best model

lnstd = 34 − 0.25X +
lnf− lns1 − 0.5dg

es6.02−0.08Xd s22d

whereX5applied stress~% ABL!; and t5time in seconds.
A variation of the scale and the shape parameters with str

apparent in the best model, giving apparently tight bounds o
predictions at low stress levels~albeit on a log time scale!,
whereas in the worst model the shape parameter is constan
ing a much broader set of confidence limits.

Confidence limits~obtained from the 95th and 5th percen
lines! of the best and the worst models at 60% ABL are sum
rized in Table 6. Points A and B are the confidence limits a
the logarithmic time axis. Points C and D are the confide
limits of the load axis~Figs. 3 and 4!. Clearly the differenc
between the confidence limits of the worst model is about
decades on the logarithmic time axis. This difference betwee
models is very significant, especially at low stress levels~below
50% ABL!. The confidence range of the load is about 10% A

The worst model gives longer predicted stress-rupture
times, which would be desirable if true, but gives larger un
tainty, which would mean larger factors of safety would be
quired. In contrast, the model that is statistically best gives sh

lifetimes but less apparent uncertainty.
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An important factor to note is that there is only a small dif
ence in the KLD values for completely different models. For
ample, the range of discrepancy values in Tables 4 and 5 i
than 1%. There is no way of judging whether a 1% differenc
the KLD values is significant. Each model is being compared
a notional operating model, whose parameters are not know
cannot be determined; this means that the values of the KLD~and
similarly those of the AIC! are not in themselves important. Ho
ever, the rank order of those discriminators is a valid mean
determining which is the best model.

Table 7 shows a comparison between the various mo
ranked in ascending order of their Kullback-Liebler discrepa
The table shows the two values of most interest to engine

Table 4. Results of Kullback-Leibler Discrepancy Calculation

Model category

Candid

L, C L, EL

1. Inverse power-Weibull 2.3385 2.7438

0.0754 0.0885

15.1906 15.1037

2. Inverse power-lognormal 2.5147 2.8534

0.0811 0.0920

15.2005 15.1266

3. Arrhenius-Weibull D D

4. Arrhenius-lognormal 2.5111 2.9326

0.0810 0.0946

15.2110 15.1317

5. Exponential-Weibull 2.3615 2.6561

0.0762 0.0857

15.1817 15.1005
6. Exponential-lognormal 2.5221 2.7970

0.0814 0.0902

15.1914 15.1235

Note: For each combination of category and candidate models th

ĉû /n+ftrsVrs
−1Arsdg /n5Kullback-Leibler discrepancy. D5discarded beca

has the minimum discrepancy is in bold text.

Table 5. Results of Akaike Information Criterion Calculation

Model category

Candid

L, C L, EL

1. Inverse power-Weibull 468.57 465.471

15.2119 15.1442

2. Inverse power-lognormal 468.70 466.07

15.2161 15.1635

3. Arrhenius-Weibull D D

4. Arrhenius-lognormal 469.03 466.15

15.2268 15.1661

5. Exponential-Weibull 468.27 465.46

15.2023 15.1439
6. Exponential-lognormal 468.41 466.03

15.12068 15.1623

Note: For each combination of category and candidate models two n
information criterion~AIC!, wheren5number of data points. D5discard
EL5exponential linear; C5constant. Example: L, EL~scale parameter

The model which has the minimum discrepancy is in bold text.

JOURNAL OF COMP
designers;~1! the mean load that would be expected to ca
failure after 100 years; and~2! the value with only a 5% chance
causing failure in the same time. It is these values, and
difference~shown in the table as “Mean–5%”!, which is likely to
form the basis of clauses in codes of practice that limit the
manent stress that will be applied to prestressing tendons.
that three of the models gave results where the mean load
less than the 5% load; these models have shape factors tha
linearly with stress, and at the stress levels to cause failure
100 years, the shape factors are negative. They have thus
discounted here, despite passing the earlier validity checks.

Study of Table 7 shows that, in general, the “Mean–5%”
ues increase as the KLD values increase. The best resu

odels~variation of scale and shape parameters!

L, L EL, C EL, EL EL, L

2.3462 2.2087 2.7816 2.

0.0757 0.0712 0.0897 0.0

15.1113 15.2009 15.1103 15.1

3.3102 2.4317 2.9015 3

0.1068 0.0784 0.0936 0.1

15.1333 15.2191 15.1365 15.1

D 2.1848 2.9116 2.31

0.0705 0.0939 0.074

15.2102 15.1148 15.118

3.4165 D D D

0.1102

15.1424

2.3597 2.2350 2.6791 2.

0.0761 0.0721 0.0864 0.0

15.1099 15.1918 15.1067 15.11

D 2.4379 2.8340 3.3

0.0786 0.0914 0.10

15.2077 15.1321 15.1

umbers are shown: trsVrs
−1Arsd5trace term;ftrsVrs

−1Arsdg /n5penalty term; an

onfidence limits for one of the coefficients included zero. The mode

odels~variation of scale and shape parameters!

L, L EL, C EL, EL EL, L

466.105 469.02 465.637 466

15.1646 15.2265 15.1496 15.1

465.823 469.36 466.33 466

15.1556 15.2374 15.1719 15.1

D 469.33 465.646 466.34

15.2365 15.1499 15.172

465.999 D D D

15.1613

466.047 468.71 465.63 466

15.1628 15.2165 15.1494 15.16

D 469.00 466.26 465.

15.2258 15.1697 15.1

rs are shown:ĉû5maximum log likelihood estimation; andĉû /n+p/n5Akaike
cause confidence limits for one of the coefficients includes zero. L5linear;
linearly with stress; shape parameter varies exponential linear with!.
ate m
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given by the Weibull distribution, and the worst results all h
constant values of the shape parameter. This is perhaps no
prising, because the calculations are being carried out on
~times to failure! and it seems unlikely that there will be the sa
spread, when expressed as a number of decades, for loads t
be sustained for hundreds of years, as for loads that cause
after a few seconds. Another factor that may be of note is tha
Arrhenius models either failed the confidence limit check~and so
are omitted from Table 4! or lie in the middle of the table. Th
may indicate that the mechanism of creep rupture is not
described using the modified version of the Arrhenius equatio
at least not as one that could be described by a single activ
energy.

The final factor that emerges from Table 7 is that no one m
emerges as a clear “best” model. Many extrapolations ca
made, using standard statistical techniques, with models tha
apparently good fits to the data, yet which produce predic
that vary quite significantly. The best 10 models~which are al
Weibull models! give 5% values that range from 45.4% ABL
55.8% ABL, and which give “Mean–5%” spreads that vary fr
0.3% ABL to 3.8% ABL.

The reason for this is the lack of data with times-to-br
beyond one year. In the absence of such data, which is ver
pensive to obtain, or in the absence of any accelerated te
results that can validly be used to fill the gap between 1 yea
100 years, the lack of certainty is bound to be of concer
engineers who have to certify such structures for a long t
Further accelerated testing, as described in~Alwis 2003! is essen
tial.

Fig. 3. Lifetime distribution of best model

Table 6. Confidence Limits in Both Stress and Time from Mean Tim

Percentile lines

Best model~exponential-Weibull, scale: L; sha

Stress Time

~% ABL! ~years!

5% 57.6 1.26

50% 60.0 2.79

95% 61.3 4.37
Note: L5linear; EL5exponential linear; and C5constant.
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Conclusion

Techniques have been evaluated for the statistical assessm
alternative models for the stress-rupture of aramid ropes, us
set of existing data as a basis for calculation. The techn
would allow the inclusion of censored data if that were availa

Arrhenius, inverse-power, and exponential life models w
considered using the Weibull and lognormal statistical dist
tions; the scale and shape parameters following were assum
vary linearly, quadraticly, and exponentially with stress.

The maximum likelihood method was used to determine
optimum parameters, and the 120 different models were
pared using the likelihood ratio confidence limit check, and
Kullback-Leibler discrepancy criterion~KLD ! or the Akaike in-
formation criterion~AIC!.

It was found that the difference between the best and w
models varied by only 1% using the KLD or AIC methods.

Using these methods it was possible to predict the confid
limits of the models to determine the long-term stress-rup
behavior of aramid ropes.

It was found that the exponential model, using the We
distribution, with the scale parameter varying linearly and
shape parameter varying exponentially-linearly, gave the be
to the data set. However, this is not regarded as the final wo
the subject, because more tests should be carried out to
stress-rupture data that can then be incorporated into the c
data set using the techniques described here.

No attempt has been made to provide a physical explanat
to why a particular model best fits the data.

This paper was intended only to evaluate the statistical
niques that could be used when extrapolating stress-rupture

Fig. 4. Lifetime distribution of worst model

ailure of Rope Loaded by 60% ABL for Best and Worst Models

Worst model~inverse power-lognormal, scale: EL; shape: C!

Stress Time

~% ABL! ~years!

56.4 2.43

60.0 31.66

64.4 411.85
e to F

pe: EL!
H/APRIL 2005
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–5%
to useful structural lifetimes. It does not provide a definitive
swer for the allowable prestress in a tendon in a concrete b
and the numerical results quoted here should not be taken
basis for such a discussion unless further test data becomes
able.

Acknowledgment

The writer would like to acknowledge assistance fr
Dr. G. A. Young of the Cambridge University Statistical Labo
tory. The first writer was supported by a grant from the C
bridge Commonwealth Trust.

Notation

The following symbols are used in this paper:
A0,A1,A2 5 coefficients;
B0,B1,B2 5 coefficients;

B̂0,B̂1,Â0,Â1 5 maximum likelihood estimates~denoted by

û!;
Fstd 5 cumulative distribution function;

Table 7. Predicted Mean and 5% Loads To Give Stress-Rupture Fa
Values

Physical model Statistical model Scale parameter

Exponential Weibull L

Inverse power Weibull L

Exponential Weibull EL

Exponential Weibull L

Inverse power Weibull EL

Inverse power Weibull L

Arrhenius Weibull EL

Exponential Weibull EL

Inverse power Weibull EL

Arrhenius Weibull EL

Exponential Lognormal L

Inverse power Lognormal L

Arrhenius Lognormal L

Exponential Lognormal EL

Inverse power Lognormal L

Inverse power Lognormal EL

Exponential Lognormal EL

Arrhenius Lognormal L

Inverse power Lognormal EL

Exponential Weibull L

Inverse power Weibull L

Exponential Lognormal L

Exponential Weibull EL

Inverse power Weibull EL

Inverse power Lognormal L

Exponential Lognormal EL

Arrhenius Weibull EL

Arrhenius Lognormal L

Inverse power Lognormal EL

Note: L5linear; EL5exponential linear; and C5constant.
aMean strength is less than 5% strength.
fstd 5 probability density function;

JOURNAL OF COMP
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k 5 Boltzmann’s constant;
M ,M8 ,N 5 constants;

m 5 number of singly censored data points in
sample;

n 5 total number of data points in sample;
p,p8 5 number of coefficients in general and

constrained models;
Rstd 5 reliability or survival function;

T 5 absolute temperature~Kelvin!;
t 5 time;
ti 5 time to failure;
X 5 stress factor;
x 5 external applied stress;
a 5 Weibull scale parameter;
b 5 Weibull shape parameter;

g ,g0,g1 5 parameters;
∆H 5 activation energy of reaction;

L 5 LR test statistic;
me 5 lognormal scale parameter;
se 5 lognormal shape parameter;
c 5 sample log likelihood;

ĉg,ĉc 5 maximum log likelihood values of general
and constrained models; and

ĉû 5 maximum log likelihood value.

fter 100 Years, for All Models, Ranked by Their Kullback-Liebler Dis

ape parameter KLD Mean 5% Mean

EL 15.1005 46.519 45.572 0.947

EL 15.1037 50.755 50.239 0.516

EL 15.1067 50.850 50.019 0.831

L 15.1099 45.446 41.622 3.824

EL 15.1103 53.779 53.286 0.493

L 15.1113 49.969 47.608 2.361

EL 15.1148 55.775 55.460 0.315

L 15.1155 49.988 47.196 2.792

L 15.1168 53.084 51.224 1.860

L 15.1181 55.165 53.810 1.355

EL 15.1235 49.540 48.424 1.116

EL 15.1266 52.970 52.283 0.687

EL 15.1317 55.217 54.750 0.467

EL 15.1321 53.930 53.043 0.887

L 15.1333 55.009 49.952 5.057

EL 15.1365 56.092 55.504 0.588

L 15.1379 54.363 55.947 a

L 15.1424 55.550 57.651 a

L 15.1464 56.478 57.814 a

C 15.1817 46.649 34.500 12.149

C 15.1906 51.202 43.456 7.746

C 15.1914 51.743 44.251 7.492

C 15.1918 51.666 44.114 7.552

C 15.2009 54.607 49.274 5.333

C 15.2050 55.009 49.952 5.057

C 15.2077 56.377 51.978 4.399

C 15.2102 56.582 52.410 4.172

C 15.2110 57.163 53.215 3.948

C 15.2191 58.290 54.917 3.373
ilure a

Sh
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