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The creep effects on sequentially built bridges are analysed

by the theory of thermal creep. Two types of analysis are

used: time dependent and steady state. The traditional

uniform creep analysis is also introduced briefly. Both

simplified and parabolic normalising creep–temperature

functions are used in the analysis for comparison.

Numerical examples are presented, calculated by a

computer program based on the theory of thermal creep

and using the displacement method. It is concluded that

different assumptions within thermal creep can lead to

very different results when compared with uniform

creep analysis. The steady-state analysis of monolithically

built structures can serve as a limit to evaluate total

creep effects for both monolithically and sequentially

built structures. The importance of the correct selection

of the normalising creep–temperature function is

demonstrated.
NOTATION
GCS
Bridge Engineer
Global coordinate system
LCS
 Local coordinate system
TTS
 Temperature-transformed section
Dotted symbols (e.g. _x) refer to differentiation of x with respect

to pseudo-time.

Delta symbols (e.g. Dx) relate to increments of x.

Dashed symbols (e.g. x0) relate to the local coordinate system

of the temperature-transformed section.

Barred symbols (e.g. �x) relate to the local member coordinate

system.

Subscript th (e.g. xth) relates to thermal effects.

Subscript cr (e.g. xcr) relates to creep effects.

Subscript ref (e.g. xref) relates to the reference state.

Subscript o (e.g. x0) relates to the time of loading.

Subscript k (e.g. xk) relates to the kth time interval.
A
 area of real section
At,tr
 area of TTS
b(y)
 width of section
C
 specific creep
{D}
 generalised nodal displacements
E and E(t)
 elastic modulus
{ �FFFFF}
 generalised member end forces about actual

section
{D �FFFFFk,fix}
 increment of thermal fixed-end forces in the

kth interval
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{D �FFFFFk,nod}
ep analysis of conc
increment of thermal member end

forces caused by nodal loads in the

kth interval
{ �FFFFFref
1 },{ �FFFFFref

2 }
 the first and second part of member forces

in the reference interval
G
 position of centroidal axis of actual section
Gt,tr
 position of centroidal axis of TTS
h
 depth of section
I
 second moment of area about the centroidal

axis of actual section
It,tr
 second moment of area of TTS about the

centroidal axis of TTS
[K ]
 total stiffness matrix
[Kt,tr]
 total stiffness matrix of TTS
[k0t,tr]
 member stiffness matrix of TTS in LCS
MMMMM
 bending moment
mt(y)
 modular ratio due to temperature
O
 position of centroidal axis of the actual section
{P 0}
 generalised total nodal loads of TTS
T(y)
 temperature at depth y
t
 time
t�
 pseudo-time
tk
 length of time for kth interval
t0
 time of loading
Xi
0, Yi

0, Mi
0
 axial force, vertical force and moment at end i

in LCS (TTS)
x2 y
 global coordinate system
�x 2 �y
 local coordinate system
x 0 2 y 0
 local coordinate system (TTS)
y
 position in a section measured from the bottom

surface
G(y), G
 normalising creep–temperature function
Gav(y), Gav
 average normalising creep–temperature function
11111
 strain
_11111av
 average rate of strain for the complete cycle
k
 curvature
Dki
 increment of curvature
sssss, sssss (y)
 stress
ssssscr
 stress caused by creep
sssssk,free(y)
 free stress
sssssref
1 (y),

sssssref
2 (y)
first part and second part of stress in the

reference interval
sssssk,self(y)
 self-equilibrating stress
sssssth
 total thermal stress
f
 creep coefficient
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1. INTRODUCTION

When an indeterminate structure is built sequentially, trapped

moments are induced in the structure so that the bending

moment differs from that which would occur if the structure were

built at one time. Creep effects are important for the design of

sequentially built prestressed concrete structures, since they alter

these trapped moments.

Designers do not need to know the detailed variation of stress

at any particular time, and certainly do not want to perform

time-dependent creep calculations. Even if such calculations

could be performed easily, the data on concrete properties and

temperature variations are unknown and unknowable at the time

of design. What would be useful is information about the range of

bending moments to which the structure can be subjected;

provided the structure is satisfactory at the limits of the range,

the intermediate behaviour is of no concern.

In the usual design process, the creep effects are considered as

uniform through the depth of the beam and the effect of creep is

to move the dead load bending moments to those that would have

occurred if the beam had been built in one stage; this will be

termed the monolithic moment diagram.1,2 The ‘as-built’ moment

distribution and the ‘monolithic’ moment diagram thus serve as

bounds for the dead-load response. Thermal effects are

considered separately, as a purely elastic structural response to

temperature.

However, it is known that the rate of creep is dependent on the

temperature.3 Since the temperature distribution is usually

non-uniform through the depth of the section, the rate of creep at

each fibre is different and secondary forces caused by creep are

different from the uniform creep effects. The stress distribution

through the depth will also be non-linear because of the

introduction of self-equilibrating stresses.4

England identified steady-state creep as the condition when creep

is continuing, albeit slowly, with no change in stress.4 A similar

condition can be identified for states in which the temperature

changes cyclically; when the stress state is the same at the

beginning and end of each cycle the structure can be said to have

reached its steady state. Numerical results show that the steady

state is the limit when evaluating total creep effects, but most

studies have been conducted for structures built in one stage.4–6

For sequentially built structures, it is necessary to derive an

analysis that can evaluate total thermal-creep effects safely

without doing detailed time-dependent analysis from the

construction stage to service life.

The theory of thermal creep was developed initially for nuclear

power plant structures.3,4,7 Their operating temperature is higher

than for bridges (typically 20–1208C) and a simplified

creep–temperature function was assumed that was reasonable

over that range. In bridges, the temperature range is lower

(typically 0–308C), but there will be a small temperature crossfall

over the depth caused by inward solar radiation on the top and

outward thermal radiation on the underside. The soffit is typically

about 10–158C cooler than the top surface.8 It will be shown in

this work that this small temperature variation, and the exact

form of the creep–temperature function, are important factors in

determining the final moment diagram.
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Bridges are directly subjected to cyclic temperature variations.

For the consideration of creep effects, daily variations (for

younger concrete) and seasonal variations (for older concrete) are

of importance. Xu8 showed that the temperature distribution

through the depth of a section can be considered as linear for the

purpose of thermal-creep analysis, even when there are

short-term non-linear variations at the surfaces.
2. TIME-DEPENDENT THERMAL-CREEPANALYSIS

Time-dependent thermal-creep analysis can give the detailed

variation of the beam behaviour with time, although it is too

complex for day-to-day use. In the rate-of-creep method, the

creep strain rate is given by

d11111

dt
¼

1

E

dsssss

dt
þ
sssss

E

df

dt
1

England9 introduced the concept of pseudo-time. He assumed

that by rescaling time he could separate the effects of temperature

and load history, so that the specific creep C could be separated in

product form as

C(T , t , t0) ¼ G½T (y)� � t�(t , t0)2

Here, G[T (y)] is the normalising creep–temperature function and

t�(t, t0) is pseudo-time. It then follows from the definition of

specific creep that pseudo-time must be a function of the

concrete properties (E and G) and the loading history (contained

within f). It has dimensions MPa21.

t�(t , t0) ¼
f(T ¼ 20, t , t0)

E(t0)� G(T ¼ 20)
3

By introducing the relationship shown in equation (3), England7

showed that equation (1) can be further simplified as

d11111

dt�
¼

1

E

dsssss

dt�
þ sssss� G4

Integrating equation (4), the increment of strain in a given real

time interval from t1 to t2 is expressed as

D11111 ¼
Dsssss (t1)

E(t1)
þ sssss (t1)� G½T ( y)� � Dt�(t2, t1)5

If the displacement of a fibre is restrained, as in a stress-

relaxation test, the rate of strain will be zero, so

1

E(t0)

dsssss (t)

dt�
þ sssss (t)� G½T ( y)� ¼ 06

Solving the differential equation (6) and noticing that the initial

stress is sssssssssssssssssssssssss (t1), the stress at the end of the time interval is

sssss (t) ¼ sssss (t1) expf�E(t1)G½T (y)�Dt
�(t2, t1)g7

where

Dt�(t2, t1) ¼ t�(t2, t0)� t�(t1, t0)8

Equation (7) shows that creep effects exponentially decay but

with a time constant in pseudo-time that is a function of both

Young’s modulus E and the creep–temperature function G, both

of which are variables.

The structural analysis of time-dependent, thermal-creep

effects is based here on the displacement method. The length of

time to be considered is divided into many short time intervals.
nalysis of concrete bridges Xu † Burgoyne
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Fig. 1. Basic cantilever element
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The structure is divided into several elements. Each element is

first considered as a cantilever, as indicated in Fig. 1.

The basic cantilever member is statically determinate, so the

effects of creep will induce displacements at the free end but will

not change member end forces. The increment of hypothetical

free strain at each fibre of a section during the kth interval decays

with the same time constant as in equation (7)

D11111k,free(y) ¼
ssssstk�1 (y)f1� exp½�E(tk�1)G½T (y)�Dt

�(tk, tk�1)�g

E(tk�1)
9

According to the assumption of plane sections, the strain

distribution through the depth must be linear. If the hypothetical

free change of strain determined in equation (9) is artificially

prevented in the interval k, the increment of stress introduced

gradually during this interval will be

Dsssssk,free(y) ¼ �E(tk�1)D11111k,free(y)10

These stress increments can be integrated through the depth of

the beam to get the resultant force and moment. To remove the

artificial restraint, equal and opposite stress resultants can be

applied, which will cause stresses Dsssssssssssssssssssssssssk,a(y). These should be added

to the stresses from equation (10) to get the final stress change

in the increment.

Dsssssk,self (y) ¼ Dsssssk,a(y)þ Dsssssk,free(y)11

At the start of the kth interval, the stress distribution and the

temperature distribution are known, so the increment of element

end forces {D �FFFFFk,fix}, when the ends are restrained, can be

determined easily using virtual work. These are transformed from

the local to global coordinate systems and added to the nodal

loads {D �FFFFFk,nod}.

{D �FFFFFcr,k} ¼ {D �FFFFFk,nod}þ {D �FFFFFk,fix}12

The stresses caused by these end forces are added to the

self-equilibrating stresses

Dssssscr,k(y) ¼ Dsssssk(y)þ Dsssssself (y)13

These nodal forces and local stresses are then summed over all the

intervals. Further details of this analysis are presented in Xu.8

b y( )

O

G y
h

z

T( )y
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yO¢

m b yt ( )( )y

z

y
h

Gt,tr

(a) (b) (c)

Fig. 2. Relationship between actual section and TTS. (a) Actual
section; (b) TTS; (c) temperature distribution
3. STEADY-STATE ANALYSIS UNDER SUSTAINED

TEMPERATURE

The steady-state analysis is much simpler to carry out than the

time-dependent analysis. The method has been confirmed and

theoretically studied by England and colleagues3,4,7 most papers

use a force method of analysis although displacement analyses
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are normally used in real applications or for large problems.10 In

this paper, the steady-state analysis is based on the rate-of-

displacement theory of creep, which is analogous with the

displacement method.

As for the time-dependent analysis, the rate of strain is the sum of

the rate of elastic strain and the rate of creep strain

_11111 ¼ _11111e þ _11111cr ¼
_sssss

E
þ sssssG½T (y)�14

The dot notation indicates differentiation with respect to pseudo-

time, t�. The steady state occurs when the change of stress is zero,

so the rate of elastic strain is also zero; the rate of strain is then

_11111 ¼ _11111cr ¼ sssssG½T (y)�15

The steady state found by this analysis implies that no further

stress redistribution is taking place, although creep may still be

continuing, albeit at a lower rate.

Equation (15) can be thought of as analogous to the relationship

between elastic stress and strain

11111 ¼
sssss

E
16

The temperature-related function G[T(y)] is analogous to 1/E in

the elastic stress–strain relationship. Based on this idea, the

relationship between the rate of displacement and nodal forces

can be deduced.

The temperature distribution is usually non-uniform through the

depth. The breadth of the section can be adjusted (in analogy with

an adjustment for varyingE) to produce a temperature-transformed

section (TTS) which is then used in the structural analysis. Selecting

a reference temperature Tref at a particular position, the ratio of

G[T(y)] at other positions through the depth is

mt(y) ¼
G(Tref )

G½T (y)�
17

which is effectively the modular ratio that can be used to modify

the breadth of the section at depth y (Fig. 2). The geometric

properties of the TTS are then calculated in the normal way.

The section properties and G(Tref) are then used to set up the

member stiffness matrix [k0t,tr] and total stiffness matrix [Kt,tr]

in the usual way. Due allowance needs to be made for the

difference between the global coordinate system (GCS), the

local coordinate systems (LCSs) about the centroidal axes of

the physical section, and also that of the TTS.
ep analysis of concrete bridges Xu † Burgoyne 109
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As is usual in the stiffness method, the result is a relationship

between the displacement and nodal loads, but in the present case

the expression is in terms of rate of displacement

{ _D} ¼ ½Kt,tr�
�1{PPPPP0}18

where { _D} is rate of nodal displacements and {PPPPP 0} is nodal loads

in GCS about the TTS.

The rate of nodal displacement of each element and the element

end forces are then found in the normal way. The stress distribution

of a section can be calculated from {FFFFF 0} directly, taking account of

the equivalent modular ratio. At a depth y the stress is

sssssi(y) ¼
G(Tref )

G½T (y)�
�

XXXXX 0
i

At,tr
�
MMMMM 0

i

It,tr
(y � Gt,tr)

� �
19

Full details of the implementation of the method are given in

Xu,8 where it is applied to beams; a slightly more sophisticated

analysis would be needed for frames where the centroidal axes of

beams and columns might not meet at a point after temperature

transformations had been applied.

4. STEADY STATE UNDER CYCLIC TEMPERATURES

England et al.5 proposed a method to analyse the steady state under

cyclic temperature variations. A complete temperature cycle, as in

Fig. 3, is assumed to be broken up into a number of intervals, in each

ofwhich the temperature remains constant. Once the steady statehas

been reached it is assumed that the stresses in the various intervals

differ only by a set of thermal stresses. Real time t is used to replace

pseudo-time, t�, for simplicity, since the relationship between real

time and pseudo-time is almost linear once the steady state has been

reached. In the present application, the first interval in a cycle is

assumed to be the reference interval. England et al.5 and Xu8 show

that the stress state in the reference interval is the sum of two parts

sssssref (y) ¼ sssss1
ref (y)þ sssss 2

ref (y)20

where

sssss1
ref (y) ¼

_11111av(y)

Gav(y)
21

sssss2
ref (y) ¼

Pn
k¼1 sssssthk(y)tkG½Tk(y)�

Gav(y)
Pn

k¼1 tk
22

Gav(y) ¼

Pn
k¼1 tkG½Tk(y)�Pn

k¼1 tk
23
One cycle

Pseudo-time  *t

tn
*

n

k

ti
*

t2
*

t1
*

2

1
Tref

Te
m

pe
ra

tu
re

Fig. 3. Temperature variations with respect to pseudo-time in a
cycle
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The relationships in equations (21) and (22) can be used for

structural analysis.8

Equation (21) gives the stress in the reference interval caused by

the average effect of thermal creep over the cycle; it is similar to

equation (15) when Gav(y) is used as the sustained normalising

creep–temperature function. The final element forces caused by

equation (21) are { �FFFFFref
1 } and the stress distribution at node i is

sssssssssssssssssssssssssref
1 (y). These values can be calculated by the rate of displacement

method in section 3 directly.

Equation (22) represents the stress caused in the reference

interval by the variation of temperature over the cycle.

sssssssssssssssssssssssssthk(y) is the elastic thermal stress caused by the change of

temperature from the reference interval to interval k; the

structural analysis is based on the basic cantilever element

as before.

The strains at the centroid O at node i induced by equation (22) is

D11111o;i ¼

ðh
0

Pn
k¼2 sssssthk,i(y)tkG½Tk(y)�

E � A� Gav(y)
Pn

k¼1 tk
b(y)dy24

Similarly, the curvature is

Dki ¼

ðh
0

Pn
k¼2 sssssthk,i(y)tkG½Tk(y)�

E � I � Gav(y)
Pn

k¼1 tk
b(y)(y � G)dy25

If the fibre at the depth y is not restrained, the corresponding

stress at node i is

sssssfree,i(y) ¼

Pn
k¼2 sssssthk,i(y)tkG½Tk(y)�

Gav(y)
Pn

k¼1 tk
26

The section is assumed to remain plane, so a self-equilibrating

stress is needed to adjust the strain. At depth y, this can be

expressed as

Dsssssself ,i(y) ¼ sssssfree,i(y)� EDki(y � G)� ED11111o27

The axial strain D1111111111111111111111111o(x) and curvature Dk(x) vary linearly between

the two ends. The displacements at the free end can be calculated

by integrating along the length of the element. Using the same

restrain–release procedure as before, the element end forces,

{ �FFFFFref
2 }, caused by equation (22) can be solved by structural

analysis about the actual section. The stress distribution at node i

calculated by the structural analysis, Dsssssssssssssssssssssssssref,j is linearly

distributed through the depth. The total stress distribution at

end i is then

sssss2
ref,i(y) ¼ Dsssssref,i þ Dsssssself ,i(y)28

The final element end forces and stress distributions are thus

{ �FFFFFref } ¼ { �FFFFF
1

ref }þ { �FFFFF
2

ref }29

sssssref,i(y) ¼ sssss1
ref,i(y)þ sssss2

ref,i(y)30
5. NORMALISING CREEP–TEMPERATURE FUNCTION

England9 showed that if incorporating temperature effects, the

strain caused by creep is

11111cr(t , t0, T ) ¼ sssss(t0)G(T )t
�(t , t0)31
nalysis of concrete bridges Xu † Burgoyne
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In several papers,5,6 this creep–temperature function G(T ) was

taken as the value of temperature in 8C directly. This will be

termed the proportional form of the creep–temperature function.

G(T ) ¼ T32

However, experimental results show that G(T) is a more complex

function and should be approximated as a parabolic expression,5

but that reference did not propose a detailed equation. Hannant’s

experimental work11 showed that G(T ) can be approximated as

linear when the temperature is between 20 and 808C.6

G(T ) ¼ �14�5þ T33

Equations (32) and (33) may be relevant for nuclear pressure

vessels, in which temperatures can be quite high, but for bridges

temperatures often fall below 208C. If G(T ) is assumed to be

parabolic, the function can be found by assuming that G(0) ¼ 0

because water freezes and no creep occurs, and taking
z
o

y

T y1( )

15°C

15°C
b = 300

h = 500

P = 1500 kN

T y2( )

30°C

15°C

10 000 10 000
5·1 kN/m

Fig. 5. Basic structure and temperature crossfalls (all units in mm)

P = 1500 kN

10 000

5·1 kN/m

Construction stage
one (20 days)

P = 1500 kN
Construction stage

two (20 days)

P = 1500 kN
Service stage

2500

10 000

5·1 kN/m

2500

10 000

5·1 kN/m

Fig. 6. Construction sequence (all units in mm)
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G(20) ¼ 5.5 and G(80) ¼ 74.5 from equation (31). The

creep–temperature function is then

G(T ) ¼ 0�0090625T2 þ 0�093875T34

The three versions of the creep–temperature function are shown

in Fig. 4.
6. NUMERICAL EXAMPLES

The following numerical examples are designed to show the

effects of changing the form of the creep–temperature function,

and also of taking into account sequential construction. In all

cases, the concrete is assumed to have a cube strength of 40 MPa,

with the elastic modulus E and creep function f taken from the

GTG-9 report.12 The coefficient of thermal expansion is taken as

12 � 1026/8C.

The basic structural dimensions, as shown in Fig. 5, are taken from

England et al.5 so that a direct comparison can be made with the

earlier work. The construction sequence is indicated in Fig. 6.

Because thermal effects are being taken into account, an

assumption must be made about the temperature at which the

structure was built; it is assumed here that the structure was

completed, stress-free, at 158C. The examples from England et al.5

were obtained at higher temperatures using the force method; they

have been analysed again using the present stiffness formulation,

as a check, and the results agree. The examples presented here are

all calculated for typical bridge temperatures.
6.1. Effect of changing form of G(T)

The first analysis of the structure is carried out on the assumption

that it has been built monolithically, at the constant stress-free

temperature T1, and is completed when the concrete is 20 days

old. The temperature then changes to the distribution T2.

Although slightly artificial this allows the effect of changing the

creep–temperature function to be studied. If using the

proportional function (equation (32)) for G(T ), the variation of

bending moment is as shown in Fig. 7. The bending moment

diagram on completion is shown as the 20-day curve; because

the structure was built monolithically, this is the bending

moment diagram that a simple analysis of the complete structure

under its dead load would produce. In the assumed scenario, the

temperature immediately changes to T2; the top is hotter than the

bottom, so the beam tends to hog due to thermal expansion. This

hogging is resisted by the indeterminate restraints, so sagging
7500

10 000

ep analysis of concrete bridges
bending moments are induced.

The structure then immediately

starts to creep; since the top is

warmer, creep takes place more

rapidly there, so the beam tries

to sag, thus inducing hogging

restraint moments, and the

bending moment diagram

eventually reaches the steady-

state prediction, which is thus

an upper-bound on the

bending moments.

The various curves on Fig. 7 all

relate to the same dead load, so

they differ only by changes in
Xu † Burgoyne 111
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112
the indeterminate support reactions. Fig. 8 shows the change in

the intermediate support reaction with time, which shows more

clearly the speed with which creep acts. The monolithic (20-day)

value (point A in Fig. 8) alters immediately to B when the

temperature change takes effect. Creep then starts and the

reactions and bending moments move towards the steady-state

solution (C in Fig. 8). The analysis was stopped after 1000 days

when the difference from the asymptote is insignificant.

The analysis is then repeated, using the parabolic form (equation

(34)) as the normalising creep–temperature function; the

variation of bending moment and the internal support reaction

with time are illustrated in Figs 9 and 10, respectively. The

monolithic and temperature bending moments are as in the

previous example, but the steady-state solution is different. Over

the temperature ranges considered here (15–308C), the G values

are much lower using the parabolic function, so less creep can be

expected to occur. However, the ratio between G(30) and G(15) is

higher with the parabolic variation than with the proportional

function. This means that the TTS differs more from the

notional shape of the section as shown in Fig. 11. Taken together,
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these effects mean that the steady-state solution differs more

from the monolithic solution, but the structure takes longer to

creep towards it, taking about 400 days to reach 90% of the total

creep effects in Fig. 10, compared with only 55 days in Fig. 8.

This difference is significant, since the shorter period is likely to

occur while the structure is still under construction and it is

unlikely that live loads will be acting while creep is ongoing. For

the longer period, the structure will still be creeping when the

bridge is open to traffic. Using different creep–temperature

functions can result in very different solutions; for example, the

hogging bending moments near the internal support and the

fixed end are much higher in Fig. 9 than in Fig. 7.

All subsequent analyses will be performed with the parabolic

form of G(T ).
6.2. Effect of staged construction

The structure is now reanalysed, this time on the assumption

that it is built in two stages, as shown in Fig. 6. The first stage,

which becomes self-supporting at 20 days, is statically
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al Internal support reaction against time
determinate, so although it creeps, no change in the bending

moments occurs. After a further 20 days, the second stage is

completed and the structure becomes indeterminate. The

variations of bending moment diagram and internal support

reaction with time are indicated in Figs 12 and 13, respectively.

The difference between the 40-day curve and the monolithic

bending moment is the trapped moment induced by the

construction sequence.

From Figs 12 and 13, it can be observed that the steady-state

solution can still serve as an asymptote, although it takes much

longer to reach it. This is because much of the creep of the

concrete in phase 1 has already occurred before the structure

became indeterminate; it now takes about 1100 days for 90% of

the total creep effect to take place, and even after 10 000 days the

asymptote has not been reached. Under these circumstances the

designer must assume that the live load can act on the structure

both before and after creep has taken place. This will have the

effect of increasing the range of bending moments for which

the structure must be designed, and may well require a larger

cross-section.

It should also be noticed in Fig. 13 that the reaction of the

internal support does not move towards the steady-state solution

at the beginning of the period of creep (from the 40 to 42.5 days).

This behaviour may be significant in some cases, since it

implies that the concretes of two different ages are working

against each other, which can lead, in some cases, to moments

that lie outside the bounds. This is most likely to occur when

short lengths of in situ concrete are used to join together longer

structural elements which had been in place for some time, and
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which had hitherto been statically determinate. Balanced

cantilever construction springs to mind, for example, where

short lengths of in situ concrete are used to add continuity to

the determinate pier sections.
6.3. Effect of temperature cycling

In this example, the basic structure and temperature crossfalls are

taken as the same in Figs 5 and 6. The structure is assumed to

sustain temperature crossfalls cycling from T1 to T2, with equal

periods of time spent at each temperature. It is accepted that these

values are entirely artificial and arbitrary, but they were chosen

to represent a case where the top of the beam is periodically

warmer than the soffit. Results that are similar in principle have

been obtained for other temperature ranges and frequencies.

The structure is first analysed on the assumption that it is built

monolithically. Temperature variations with time are indicated in

Figs 14 and 15. A cyclic steady-state analysis is carried out, from
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which the eventual response under T1 and T2 can be

calculated. The bending moment diagrams for this range are

shown in Fig. 16.

The change in internal support reaction for the first few cycles

is shown in Fig. 14, when significant creep is taking place, and

for the later cycles in Fig. 15, when creep rates are much reduced.

It can be observed that the bending moment diagrams and

support reactions all move towards their corresponding cyclic

steady-state values at T1 and T2, respectively.
6.4. Cyclic temperature and staged construction

If the structure is built in two stages as in Fig. 6 and sustains the

cycling temperature variations as in Figs 17 and 18 during the

service life, the structural behaviour is similar to the previous

example, but the effect of the staged construction is to slow down

the creep effects and it takes much longer for the structure to

reach its asymptotic behaviour; nevertheless, the steady-state

behaviour still represents the asymptote to which the system is

converging.
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7. CONCLUSIONS

The paper has shown that the displacement method can be

used to determine creep effects in statically indeterminate

structures, which makes it simple to combine creep analysis

and normal elastic analysis. The following conclusions have

been drawn.

(a) The selection of an appropriate normalising creep–temperature

function is important and can have a significant effect on

the resulting bending moments. It is recommended that a

parabolic expression be used; the simplified form, which

uses the magnitude of temperature directly, may not

produce safe results for the structure under the lower

temperatures to which bridges are subjected. More

experimental work should be done to determine the

normalising creep–temperature function for structures

under temperature variations between 0 and 408C.
(b) The effect of using the parabolic form of the creep–

temperature function is to slow down the rate of creep at

normal temperatures, but to increase the eventual effect of
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the creep caused by the variation of the temperature over the

depth of the section.

(c) The results of steady-state analysis of the structure under

sustained temperature crossfall can be considered as one

bound on the dead load bending moment diagram subjected

to creep effects for both monolithically and sequentially

constructed bridges.

(d) The ‘as-built’ moment diagram can serve as the other bound.

The elastic response of the structure to short-term

temperature variations should be added to these bounds.

(e) The long-term structural response to cyclical temperature

variations can also be evaluated by the cyclic steady-state

analysis.

( f ) In the analysis of sequentially built structures, concrete of

different ages can work in opposition, which could lead, in

some cases, to moments and reactions that lie outside the

bounds for both uniform and non-uniform creep analysis.

This will be most important when a short in situ section is

used to add continuity to otherwise statically determinate

structures.

(g) Thermal creep analysis produces significantly different

bending moment and stress distributions when compared

with the initial state of the sequentially built structures.

This phenomenon must be taken into account in

the design.

(h) Even for concretes with the same properties, the speed with

which creep effects take place is heavily dependent on the

construction sequence and the thermal environment.

The analysis presented here has shown that thermal-creep

effects may be important in the design of bridges, even

when the temperature variation across the section is small;

it is clear that a full parametric study of the interaction

of these effects with various construction sequences should

be carried out.
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